<p>I have pointed out that the growth of clear and definite views
respecting the constitution of matter has led to the conclusion that,
so far as natural agencies are concerned, it is ingenerable and
indestructible. In so far as matter may be conceived to exist in a
purely passive state, it is, imaginably, older than motion. But, as it
must be assumed to be susceptible of motion, a particle of bare matter
at rest must be endowed with the potentiality of motion. Such a
particle, however, by the supposition, can have no energy, for there
is no cause why it should move. Suppose now that it receives an
impulse, it will begin to move with a velocity inversely proportional
to its mass, on the one hand, and directly proportional to the
strength of the impulse, on the other, and will possess <i>kinetic
energy</i>, in virtue of which it will not only continue to move for ever
if unimpeded, but if it impinges on another such particle, it will
impart more or less of its motion, to the latter. Let it be conceived
that the particle acquires a tendency to move, and that nevertheless
it does not move. It is then in a condition totally different from
that in which it was at first. A cause competent to produce motion is
operating upon it, but, for some reason or other, is unable to give
rise to motion. If the obstacle is removed, the energy which was
there, but could not manifest itself, at once gives rise to motion.
While the restraint lasts, the energy of the particle is merely
potential; and the case supposed illustrates what is meant by
<i>potential energy</i>. In this contrast of the potential with the actual,
modern physics is turning to account the most familiar of Aristotelian
distinctions—that between δυναμιϛ and ενεργεια.</p>
<p>That kinetic energy appears to be imparted by impact is a fact of
daily and hourly experience: we see bodies set in motion by bodies,
already in motion, which seem to come in contact with them. It is a
truth which could have been learned by nothing but experience, and
which cannot be explained, but must be taken as an ultimate fact
about which, explicable or inexplicable, there can be no doubt.
Strictly speaking, we have no direct apprehension of any other cause
of motion. But experience furnishes innumerable examples of the
production of kinetic energy in a body previously at rest, when no
impact is discernible as the cause of that energy. In all such cases,
the presence of a second body is a necessary condition; and the amount
of kinetic energy, which its presence enables the first to gain, is
strictly dependent on the relative positions of the two. Hence the
phrase <i>energy of position</i>, which is frequently used as equivalent to
potential energy. If a stone is picked up and held, say, six feet
above the ground, it has <i>potential energy</i>, because, if let go, it
will immediately begin to move towards the earth; and this energy may
be said to be <i>energy of position</i>, because it depends upon the
relative position of the earth and the stone. The stone is solicited
to move but cannot, so long as the muscular strength of the holder
prevents the solicitation from taking effect. The stone, therefore,
has potential energy, which becomes kinetic if it is let go, and the
amount of that kinetic energy which will be developed before it
strikes the earth depends on its position—on the fact that it is,
say, six feet off the earth, neither more nor less. Moreover, it can
be proved that the raiser of the stone had to exert as much energy in
order to place it in its position, as it will develop in falling.
Hence the energy which was exerted, and apparently exhausted, in
raising the stone, is potentially in the stone, in its raised
position, and will manifest itself when the stone is set free. Thus
the energy, withdrawn from the general stock to raise the stone, is
returned when it falls, and there is no change in the total amount.
Energy, as a whole, is conserved.</p>
<p>Taking this as a very broad and general statement of the essential
facts of the case, the raising of the stone is intelligible enough, as
a case of the communication of motion from one body to another. But
the potential energy of the raised stone is not so easily
intelligible. To all appearance, there is nothing either pushing or
pulling it towards the earth, or the earth towards it; and yet it is
quite certain that the stone tends to move towards the earth and the
earth towards the stone, in the way defined by the law of gravitation.</p>
<p>In the currently accepted language of science, the cause of motion, in
all such cases as this, when bodies tend to move towards or away from
one or another, without any discernible impact of other bodies, is
termed a 'force,' which is called 'attractive' in the one case, and
'repulsive' in the other. And such attractive or repulsive forces are
often spoken of as if they were real things, capable of exerting a
pull, or a push, upon the particles of matter concerned. Thus the
potential energy of the stone is commonly said to be due to the
'force' of gravity which is continually operating upon it.</p>
<p>Another illustration may make the case plainer. The bob of a pendulum
swings first to one side and then to the other of the centre of the
arc which it describes. Suppose it to have just reached the summit of
its right-hand half-swing. It is said that the 'attractive forces' of
the bob for the earth, and of the earth for the bob, set the former in
motion; and as these 'forces' are continually in operation, they
confer an accelerated velocity on the bob; until, when it reaches the
centre of its swing, it is, so to speak, fully charged with kinetic
energy. If, at this moment, the whole material universe, except the
bob, were abolished, it would move for ever in the direction of a
tangent to the middle of the arc described. As a matter of fact, it
is compelled to travel through its left-hand half-swing, and thus
virtually to go up hill. Consequently, the 'attractive forces' of the
bob and the earth are now acting against it, and constitute a
resistance which the charge of kinetic energy has to overcome. But, as
this charge represents the operation of the attractive forces during
the passage of the bob through the right-hand half-swing down to the
centre of the arc, so it must needs be used up by the passage of the
bob upwards from the centre of the arc to the summit of the left-hand
half-swing. Hence, at this point, the bob comes to a momentary rest.
The last fraction of kinetic energy is just neutralised by the action
of the attractive forces, and the bob has only potential energy equal
to that with which it started. So that the sum of the phenomena may be
stated thus: At the summit of either half-arc of its swing, the bob
has a certain amount of potential energy; as it descends it gradually
exchanges this for kinetic energy, until at the centre it possesses an
equivalent amount of kinetic energy; from this point onwards, it
gradually loses kinetic energy as it ascends, until, at the summit of
the other half-arc, it has acquired an exactly similar amount of
potential energy. Thus, on the whole transaction, nothing is either
lost or gained; the quantity of energy is always the same, but it
passes from one form into the other.</p>
<p>To all appearance, the phenomena exhibited by the pendulum are not to
be accounted for by impact: in fact, it is usually assumed that
corresponding phenomena would take place if the earth and the pendulum
were situated in an absolute vacuum, and at any conceivable distance
from, one another. If this be so, it follows that there must be two
totally different kinds of causes of motion: the one impact—a <i>vera
causa</i>, of which, to all appearance, we have constant experience; the
other, attractive or repulsive 'force'—a metaphysical entity which is
physically inconceivable. Newton expressly repudiated the notion of
the existence of attractive forces, in the sense in which that term is
ordinarily understood; and he refused to put forward any hypothesis as
to the physical cause of the so-called 'attraction of gravitation.' As
a general rule, his successors have been content to accept the
doctrine of attractive and repulsive forces, without troubling
themselves about the philosophical difficulties which it involves. But
this has not always been the case; and the attempt of Le Sage, in the
last century, to show that the phenomena of attraction and repulsion
are susceptible of explanation by his hypothesis of bombardment by
ultra-mundane particles, whether tenable or not, has the great merit
of being an attempt to get rid of the dual conception of the causes
of motion which has hitherto prevailed. On this hypothesis, the
hammering of the ultra-mundane corpuscles on the bob confers its
kinetic energy, on the one hand, and takes it away on the other; and
the state of potential energy means the condition of the bob during
the instant at which the energy, conferred by the hammering during the
one half-arc, has just been exhausted by the hammering during the
other half-arc. It seems safe to look forward to the time when the
conception of attractive and repulsive forces, having served its
purpose as a useful piece of scientific scaffolding, will be replaced
by the deduction of the phenomena known as attraction and repulsion,
from the general laws of motion.</p>
<p>The doctrine of the conservation of energy which I have endeavored to
illustrate is thus defined by the late Clerk Maxwell:</p>
<p>'The total energy of any body or system of bodies is a quantity which
can neither be increased nor diminished by any mutual action of such
bodies, though it may be transformed into any one of the forms of
which energy is susceptible.' It follows that energy, like matter, is
indestructible and ingenerable in nature. The phenomenal world, so far
as it is material, expresses the evolution and involution of energy,
its passage from the kinetic to the potential condition and back
again. Wherever motion of matter takes place, that motion is effected
at the expense of part of the total store of energy.</p>
<p>Hence, as the phenomena exhibited by living beings, in so far as they
are material, are all molar or molecular motions, these are included
under the general law. A living body is a machine by which energy is
transformed in the same sense as a steam-engine is so, and all its
movements, molar and molecular, are to be accounted for by the energy
which is supplied to it. The phenomena of consciousness which arise,
along with certain transformations of energy, cannot be interpolated
in the series of these transformations, inasmuch as they are not
motions to which the doctrine of the conservation of energy applies.
And, for the same reason, they do not necessitate the using up of
energy; a sensation has no mass and cannot be conceived to be
susceptible of movement. That a particular molecular motion does give
rise to a state of consciousness is experimentally certain; but the
how and why of the process are just as inexplicable as in the case of
the communication of kinetic energy by impact.</p>
<p>When dealing with the doctrine of the ultimate constitution of matter,
we found a certain resemblance between the oldest speculations and the
newest doctrines of physical philosophers. But there is no such
resemblance between the ancient and modern views of motion and its
causes, except in so far as the conception of attractive and repulsive
forces may be regarded as the modified descendant of the Aristotelian
conception of forms. In fact, it is hardly too much to say that the
essential and fundamental difference between ancient and modern
physical science lies in the ascertainment of the true laws of statics
and dynamics in the course of the last three centuries; and in the
invention of mathematical methods of dealing with all the consequences
of these laws. The ultimate aim of modern physical science is the
deduction of the phenomena exhibited by material bodies from
physico-mathematical first principles. Whether the human intellect is
strong enough to attain the goal set before it may be a question, but
thither will it surely strive.</p>
<p>The third great scientific event of our time, the rehabilitation of
the doctrine of evolution, is part of the same tendency of increasing
knowledge to unify itself, which has led to the doctrine of the
conservation of energy. And this tendency, again, is mainly a product
of the increasing strength conferred by physical investigation on the
belief in the universal validity of that orderly relation of facts,
which we express by the so-called 'Laws of Nature.'</p>
<p>The growth of a plant from its seed, of an animal from its egg, the
apparent origin of innumerable living things from mud, or from the
putrefying remains of former organisms, had furnished the earlier
scientific thinkers with abundant analogies suggestive of the
conception of a corresponding method of cosmic evolution from a
formless 'chaos' to an ordered world which might either continue for
ever or undergo dissolution into its elements before starting on a new
course of evolution. It is therefore no wonder that, from the days of
the Ionian school onwards, the view that the universe was the result
of such a process should have maintained itself as a leading dogma of
philosophy. The emanistic theories which played so great a part in
Neoplatonic philosophy and Gnostic theology are forms of evolution. In
the seventeenth century, Descartes propounded a scheme of evolution,
as an hypothesis of what might have been the mode of origin of the
world, while professing to accept the ecclesiastical scheme of
creation, as an account of that which actually was its manner of
coming into existence. In the eighteenth century, Kant put forth a
remarkable speculation as to the origin of the solar system, closely
similar to that subsequently adopted by Laplace and destined to become
famous under the title of the 'nebular hypothesis.'</p>
<p>The careful observations and the acute reasonings of the Italian
geologists of the seventeenth and eighteenth centuries; the
speculations of Leibnitz in the 'Protogaea' and of Buffon in his
'Théorie de la Terre;' the sober and profound reasonings of Hutton, in
the latter part of the eighteenth century; all these tended to show
that the fabric of the earth itself implied the continuance of
processes of natural causation for a period of time as great, in
relation to human history, as the distances of the heavenly bodies
from us are, in relation to terrestrial standards of measurement. The
abyss of time began to loom as large as the abyss of space. And this
revelation to sight and touch, of a link here and a link there of a
practically infinite chain of natural causes and effects, prepared the
way, as perhaps nothing else has done, for the modern form of the
ancient theory of evolution.</p>
<p>In the beginning of the eighteenth century, De Maillet made the first
serious attempt to apply the doctrine to the living world. In the
latter part of it, Erasmus Darwin, Goethe, Treviranus, and Lamarck
took up the work more vigorously and with better qualifications. The
question of special creation, or evolution, lay at the bottom of the
fierce disputes which broke out in the French Academy between Cuvier
and St.-Hilaire; and, for a time, the supporters of biological
evolution were silenced, if not answered, by the alliance of the
greatest naturalist of the age with their ecclesiastical opponents.
Catastrophism, a short-sighted teleology, and a still more
short-sighted orthodoxy, joined forces to crush evolution.</p>
<p>Lyell and Poulett Scrope, in this country, resumed the work of the
Italians and of Hutton; and the former, aided by a marvellous power of
clear exposition, placed upon an irrefragable basis the truth that
natural causes are competent to account for all events, which can be
proved to have occurred, in the course of the secular changes which
have taken place during the deposition of the stratified rocks. The
publication of 'The Principles of Geology,' in 1830, constituted an
epoch in geological science. But it also constituted an epoch in the
modern history of the doctrines of evolution, by raising in the mind
of every intelligent reader this question: If natural causation is
competent to account for the not-living part of our globe, why should
it not account for the living part?</p>
<p>By keeping this question before the public for some thirty years,
Lyell, though the keenest and most formidable of the opponents of the
transmutation theory, as it was formulated by Lamarck, was of the
greatest possible service in facilitating the reception of the sounder
doctrines of a later day. And, in like fashion, another vehement
opponent of the transmutation of species, the elder Agassiz, was
doomed to help the cause he hated. Agassiz not only maintained the
fact of the progressive advance in organisation of the inhabitants of
the earth at each successive geological epoch, but he insisted upon
the analogy of the steps of this progression with those by which the
embryo advances to the adult condition, among the highest forms of
each group. In fact, in endeavoring to support these views he went a
good way beyond the limits of any cautious interpretation of the facts
then known.</p>
<p>Although little acquainted with biological science, Whewell seems to
have taken particular pains with that part of his work which deals
with the history of geological and biological speculation; and several
chapters of his seventeenth and eighteenth books, which comprise the
history of physiology, of comparative anatomy and of the
palætiological sciences, vividly reproduce the controversies of the
early days of the Victorian epoch. But here, as in the case of the
doctrine of the conservation of energy, the historian of the inductive
sciences has no prophetic insight; not even a suspicion of that which
the near future was to bring forth. And those who still repeat the
once favorite objection that Darwin's 'Origin of Species' is nothing
but a new version of the 'Philosophie zoologique' will find that, so
late as 1844, Whewell had not the slightest suspicion of Darwin's main
theorem, even as a logical possibility. In fact, the publication of
that theorem by Darwin and Wallace, in 1859, took all the biological
world by surprise. Neither those who were inclined towards the
'progressive transmutation' or 'development' doctrine, as it was then
called, nor those who were opposed to it, had the slightest suspicion
that the tendency to variation in living beings, which all admitted as
a matter of fact; the selective influence of conditions, which no one
could deny to be a matter of fact, when his attention was drawn to the
evidence; and the occurrence of great geological changes which also
was matter of fact; could be used as the only necessary postulates of
a theory of the evolution of plants and animals which, even if not at
once, competent to explain all the known facts of biological science,
could not be shown to be inconsistent with any. So far as biology is
concerned, the publication of the 'Origin of Species,' for the first
time, put the doctrine of evolution, in its application to living
things, upon a sound scientific foundation. It became an instrument of
investigation, and in no hands did it prove more brilliantly
profitable than in those of Darwin himself. His publications on the
effects of domestication in plants and animals, on the influence of
cross-fertilisation, on flowers as organs for effecting such
fertilisation, on insectivorous plants, on the motions of plants,
pointed out the routes of exploration which have since been followed
by hosts of inquirers, to the great profit of science.</p>
<p>Darwin found the biological world a more than sufficient field for
even his great powers, and left the cosmical part of the doctrine to
others. Not much has been added to the nebular hypothesis, since the
time of Laplace, except that the attempt to show (against that
hypothesis) that all nebulæ are star clusters, has been met by the
spectroscopic proof of the gaseous condition of some of them.
Moreover, physicists of the present generation appear now to accept
the secular cooling of the earth, which is one of the corollaries of
that hypothesis. In fact, attempts have been made, by the help of
deductions from the data of physics, to lay down an approximate limit
to the number of millions of years which have elapsed since the earth
was habitable by living beings. If the conclusions thus reached should
stand the test of further investigation, they will undoubtedly be very
valuable. But, whether true or false, they can have no influence upon
the doctrine of evolution in its application to living organisms. The
occurrence of successive forms of life upon our globe is an historical
fact, which cannot be disputed; and the relation of these successive
forms, as stages of evolution of the same type, is established in
various cases. The biologist has no means of determining the time over
which the process of evolution has extended, but accepts the
computation of the physical geologist and the physicist, whatever that
may be.</p>
<p>Evolution as a philosophical doctrine applicable to all phenomena,
whether physical or mental, whether manifested by material atoms or by
men in society, has been dealt with systematically in the 'Synthetic
Philosophy' of Mr. Herbert Spencer. Comment on that great undertaking
would not be in place here. I mention it because, so far as I know, it
is the first attempt to deal, on scientific principles, with modern
scientific facts and speculations. For the 'Philosophic positive' of
M. Comte, with which Mr. Spencer's system of philosophy is sometimes
compared, though it professes a similar object, is unfortunately
permeated by a thoroughly unscientific spirit, and its author had no
adequate acquaintance with the physical sciences even of his own time.</p>
<hr style='width: 45%;' />
<p>The doctrine of evolution, so far as the present physical cosmos is
concerned, postulates the fixity of the rules of operation of the
causes of motion in the material universe. If all kinds of matter are
modifications of one kind, and if all modes of motion are derived from
the same energy, the orderly evolution of physical nature out of one
substratum and one energy implies that the rules of action of that
energy should be fixed and definite. In the past history of the
universe, back to that point, there can be no room for chance or
disorder. But it is possible to raise the question whether this
universe of simplest matter and definitely operating energy, which
forms our hypothetical starting point, may not itself be a product of
evolution from a universe of such matter, in which the manifestations
of energy were not definite—in which, for example, our laws of motion
held good for some units and not for others, or for the same units at
one time and not at another—and which would therefore be a real
epicurean chance-world?</p>
<p>For myself, I must confess that I find the air of this region of
speculation too rarefied for my constitution, and I am disposed to
take refuge in 'ignoramus et ignorabimus.'</p>
<p>The execution of my further task, the indication of the most important
achievements in the several branches of physical science during the
last fifty years, is embarrassed by the abundance of the objects of
choice; and by the difficulty which everyone, but a specialist in each
department, must find in drawing a due distinction between discoveries
which strike the imagination by their novelty, or by their practical
influence, and those unobtrusive but pregnant observations and
experiments in which the germs of the great things of the future
really lie. Moreover, my limits restrict me to little more than a bare
chronicle of the events which I have to notice.</p>
<p>In physics and chemistry, the old boundaries of which sciences are
rapidly becoming effaced, one can hardly go wrong in ascribing a
primary value to the investigations into the relation between the
solid, liquid, and gaseous states of matter on the one hand, and
degrees of pressure and of heat on the other. Almost all, even the
most refractory, solids have been vaporised by the intense heat of the
electric arc; and the most refractory gases have been forced to assume
the liquid, and even the solid, forms by the combination of high
pressure with intense cold. It has further been shown that there is no
discontinuity between these states—that a gas passes into the liquid
state through a condition which is neither one nor the other, and that
a liquid body becomes solid, or a solid liquid, by the intermediation
of a condition in which it is neither truly solid nor truly liquid.</p>
<p>Theoretical and experimental investigations have concurred in the
establishment of the view that a gas is a body, the particles of which
are in incessant rectilinear motion at high velocities, colliding with
one another and bounding back when they strike the walls of the
containing vessel; and, on this theory, the already ascertained
relations of gaseous bodies to heat and pressure have been shown to be
deducible from mechanical principles. Immense improvements have been
effected, in the means of exhausting a given space of its gaseous
contents; and experimentation on the phenomena which attend the
electric discharge and the action of radiant heat, within the
extremely rarefied media thus produced, has yielded a great number of
remarkable results, some of which have been made familiar to the
public by the Gieseler tubes and the radiometer. Already, these
investigations have afforded an unexpected insight into the
constitution of matter and its relations with thermal and electric
energy, and they open up a vast field for future inquiry into some of
the deepest problems of physics. Other important steps, in the same
direction, have been effected by investigations into the absorption of
radiant heat proceeding from different sources by solid, fluid, and
gaseous bodies. And it is a curious example of the interconnection of
the various branches of physical science, that some of the results
thus obtained have proved of great importance in meteorology.</p>
<p>The existence of numerous dark lines, constant in their number and
position in the various regions of the solar spectrum, was made out by
Fraunhofer in the early part of the present century, but more than
forty years elapsed before their causes were ascertained and their
importance recognised. Spectroscopy, which then took its rise, is
probably that employment of physical knowledge, already won, as a
means of further acquisition, which most impresses the imagination.
For it has suddenly and immensely enlarged our power of overcoming the
obstacles which almost infinite minuteness on the one hand, and almost
infinite distance on the other, have hitherto opposed to the
recognition of the presence and the condition of matter. One
eighteen-millionth of a grain of sodium in the flame of a spirit-lamp
may be detected by this instrument; and, at the same time, it gives
trust-worthy indications of the material constitution not only of the
sun, but of the farthest of those fixed stars and nebulæ which afford
sufficient light to affect the eye, or the photographic plate, of the
inquirer.</p>
<p>The mathematical and experimental elucidation of the phenomena of
electricity, and the study of the relations of this form of energy
with chemical and thermal action, had made extensive progress before
1837. But the determination of the influence of magnetism on light,
the discovery of diamagnetism, of the influence of crystalline
structure on magnetism, and the completion of the mathematical theory
of electricity, all belong to the present epoch. To it also appertain
the practical execution and the working out of the results of the
great international system of observations on terrestrial magnetism,
suggested by Humboldt in 1836; and the invention of instruments of
infinite delicacy and precision for the quantitative determination of
electrical phenomena. The voltaic battery has received vast
improvements; while the invention of magneto-electric engines and of
improved means of producing ordinary electricity has provided sources
of electrical energy vastly superior to any before extant in power,
and far more convenient for use.</p>
<p>It is perhaps this branch of physical science which may claim the palm
for its practical fruits, no less than for the aid which it has
furnished to the investigation of other parts of the field of physical
science. The idea of the practicability of establishing a
communication between distant points, by means of electricity, could
hardly fail to have simmered in the minds of ingenious men since,
well nigh a century ago, experimental proof was given that electric
disturbances could be propagated through a wire twelve thousand feet
long. Various methods of carrying the suggestion into practice had
been carried out with some degree of success; but the system of
electric telegraphy, which, at the present time, brings all parts of
the civilised world within a few minutes of one another, originated
only about the commencement of the epoch under consideration. In its
influence on the course of human affairs, this invention takes its
place beside that of gunpowder, which tended to abolish the physical
inequalities of fighting men; of printing, which tended to destroy the
effect of inequalities in wealth among learning men; of steam
transport, which has done the like for travelling men. All these gifts
of science are aids in the process of levelling up; of removing the
ignorant and baneful prejudices of nation against nation, province
against province, and class against class; of assuring that social
order which is the foundation of progress, which has redeemed Europe
from barbarism, and against which one is glad to think that those who,
in our time, are employing themselves in fanning the embers of ancient
wrong, in setting class against class, and in trying to tear asunder
the existing bonds of unity, are undertaking a futile struggle. The
telephone is only second in practical importance to the electric
telegraph. Invented, as it were, only the other day, it has already
taken its place as an appliance of daily life. Sixty years ago, the
extraction of metals from their solutions, by the electric current,
was simply a highly interesting scientific fact. At the present day,
the galvano-plastic art is a great industry; and, in combination with
photography, promises to be of endless service in the arts. Electric
lighting is another great gift of science to civilisation, the
practical effects of which have not yet been fully developed, largely
on account of its cost. But those whose memories go back to the
tinder-box period, and recollect the cost of the first lucifer
matches, will not despair of the results of the application of science
and ingenuity to the cheap production of anything for which there is a
large demand.</p>
<div style="break-after:column;"></div><br />