<p>The influence of the progress of electrical knowledge and invention
upon that of investigation in other fields of science is highly
remarkable. The combination of electrical with mechanical contrivances
has produced instruments by which, not only may extremely small
intervals of time be exactly measured, but the varying rapidity of
movements, which take place in such intervals and appear to the
ordinary sense instantaneous, is recorded. The duration of the winking
of an eye is a proverbial expression for an instantaneous action;
but, by the help of the revolving cylinder and the electrical
marking-apparatus, it is possible to obtain a graphic record of such
an action, in which, if it endures a second, that second shall be
subdivided into a hundred, or a thousand, equal parts, and the state
of the action at each hundredth, or thousandth, of a second exhibited.
In fact, these instruments may be said to be time-microscopes. Such
appliances have not only effected a revolution in physiology, by the
power of analysing the phenomena of muscular and nervous activity
which they have conferred, but they have furnished new methods of
measuring the rate of movement of projectiles to the artillerist.
Again, the microphone, which renders the minutest movements audible,
and which enables a listener to hear the footfall of a fly, has
equipped the sense of hearing with the means of entering almost as
deeply into the penetralia of nature, as does the sense of sight.</p>
<p>That light exerts a remarkable influence in bringing about certain
chemical combinations and decompositions was well known fifty years
ago, and various more or less successful attempts to produce permanent
pictures, by the help of that knowledge, had already been made. It was
not till 1839, however, that practical success was obtained; but the
'daguerreotypes' were both cumbrous and costly, and photography would
never have attained its present important development had not the
progress of invention substituted paper and glass for the silvered
plates then in use. It is not my affair to dwell upon the practical
application of the photography of the present day, but it is germane
to my purpose to remark that it has furnished a most valuable
accessory to the methods of recording motions and lapse of time
already in existence. In the hands of the astronomer and the
meteorologist, it has yielded means of registering terrestrial, solar,
planetary, and stellar phenomena, independent of the sources of error
attendant on ordinary observation; in the hands of the physicist, not
only does it record spectroscopic phenomena with unsurpassable ease
and precision, but it has revealed the existence of rays having
powerful chemical energy, or beyond the visible limits of either end
of the spectrum; while, to the naturalist, it furnishes the means by
which the forms of many highly complicated objects may be represented,
without that possibility of error which is inherent in the work of the
draughtsman. In fact, in many cases, the stern impartiality of
photography is an objection to its employment: it makes no distinction
between the important and the unimportant; and hence photographs of
dissections, for example, are rarely so useful as the work of a
draughtsman who is at once accurate and intelligent.</p>
<p>The determination of the existence of a new planet, Neptune, far
beyond the previously known bounds of the solar system, by
mathematical deduction from the facts of perturbation; and the
immediate confirmation of that determination, in the year 1846, by
observers who turned their telescopes into the part of the heavens
indicated as its place, constitute a remarkable testimony of nature to
the validity of the principles of the astronomy of our time. In
addition, so many new asteroids have been added to those which were
already known to circulate in the place which theoretically should be
occupied by a planet, between Mars and Jupiter, that their number now
amounts to between two and three hundred. I have already alluded to
the extension of our knowledge of the nature of the heavenly bodies by
the employment of spectroscopy. It has not only thrown wonderful
light upon the physical and chemical constitution of the sun, fixed
stars, and nebulæ, and comets, but it holds out a prospect of
obtaining definite evidence as to the nature of our so-called
elementary bodies.</p>
<p>The application of the generalisations of thermotics to the problem of
the duration of the earth, and of deductions from tidal phenomena to
the determination of the length of the day and of the time of
revolution of the moon, in past epochs of the history of the universe;
and the demonstration of the competency of the great secular changes,
known under the general name of the precession of the equinoxes, to
cause corresponding modifications in the climate of the two
hemispheres of our globe, have brought astronomy into intimate
relation with geology. Geology, in fact, proves that, in the course of
the past history of the earth, the climatic conditions of the same
region have been widely different, and seeks the explanation of this
important truth from the sister sciences. The facts that, in the
middle of the Tertiary epoch, evergreen trees abounded within the
arctic circle; and that, in the long subsequent Quaternary epoch, an
arctic climate, with its accompaniment of gigantic glaciers, obtained
in the northern hemisphere, as far south as Switzerland and Central
France, are as well established as any truths of science. But, whether
the explanation of these extreme variations in the mean temperature of
a great part of the northern hemisphere is to be sought in the
concomitant changes in the distribution of land and water surfaces of
which geology affords evidence, or in astronomical conditions, such as
those to which I have referred, is a question which must await its
answer from the science of the future.</p>
<p>Turning now to the great steps in that progress which the biological
sciences have made since 1837, we are met, on the threshold of our
epoch, with perhaps the greatest of all—namely, the promulgation by
Schwann, in 1839, of the generalisation known as the 'cell theory,'
the application and extension of which by a host of subsequent
investigators has revolutionised morphology, development, and
physiology. Thanks to the immense series of labors thus inaugurated,
the following fundamental truths have been established.</p>
<p>All living bodies contain substances of closely similar physical and
chemical composition, which constitute the physical basis of life,
known as protoplasm. So far as our present knowledge goes, this takes
its origin only from pre-existing protoplasm.</p>
<p>All complex living bodies consist, at one period of their existence,
of an aggregate of minute portions of such substance, of similar
structure, called cells, each cell having its own life independent of
the others, though influenced by them.</p>
<p>All the morphological characters of animals and plants are the results
of the mode of multiplication, growth, and structural metamorphosis of
these cells, considered as morphological units.</p>
<p>All the physiological activities of animals and plants—assimilation,
secretion, excretion, motion, generation—are the expression of the
activities of the cells considered as physiological units. Each
individual, among the higher animals and plants, is a synthesis of
millions of subordinate individualities. Its individuality, therefore,
is that of a 'civitas' in the ancient sense, or that of the Leviathan
of Hobbes.</p>
<p>There is no absolute line of demarcation between animals and plants.
The intimate structure, and the modes of change, in the cells of the
two are fundamentally the same. Moreover, the higher forms are
evolved from lower, in the course of their development, by analogous
processes of differentiation, coalescence, and reduction in both the
vegetable and the animal worlds.</p>
<p>At the present time, the cell theory, in consequence of recent
investigations into the structure and metamorphosis of the 'nucleus,'
is undergoing a new development of great significance, which, among
other things, foreshadows the possibility of the establishment of a
physical theory of heredity, on a safer foundation than those which
Buffon and Darwin have devised.</p>
<p>The popular belief in abiogenesis, or the so-called 'spontaneous'
generation of the lower forms of life, which was accepted by all the
philosophers of antiquity, held its ground down to the middle of the
seventeenth century. Notwithstanding the frequent citation of the
phrase, wrongfully attributed to Harvey, 'Omne vivum ex ovo,' that
great physiologist believed in spontaneous generation as firmly as
Aristotle did. And it was only in the latter part of the seventeenth
century, that Redi, by simple and well-devised experiments,
demonstrated that, in a great number of cases of supposed spontaneous
generation, the animals which made their appearance owed their origin
to the ordinary process of reproduction, and thus shook the ancient
doctrine to its foundations. In the middle of the eighteenth century,
it was revived, in a new form, by Needham and Buffon; but the
experiments of Spallanzani enforced the conclusions of Redi, and
compelled the advocates of the occurrence of spontaneous generation to
seek evidence for their hypothesis only among the parasites and the
lowest and minutest organisms. It is just fifty years since Schwann
and others proved that, even with respect to them, the supposed
evidence of abiogenesis was untrustworthy.</p>
<p>During the present epoch, the question, whether living matter can be
produced in any other way than by the physiological activity of other
living matter, has been discussed afresh with great vigor; and the
problem has been investigated by experimental methods of a precision
and refinement unknown to previous investigators. The result is that
the evidence in favor of abiogenesis has utterly broken down, in every
case which has been properly tested. So far as the lowest and minutest
organisms are concerned, it has been proved that they never make their
appearance, if those precautions by which their germs are certainly
excluded are taken. And, in regard to parasites, every case which
seemed to make for their generation from the substance of the animal,
or plant, which they infest has been proved to have a totally
different significance. Whether not-living matter may pass, or ever
has, under any conditions, passed into living matter, without the
agency of pre-existing living matter, necessarily remains an open
question; all that can be said is that it does not undergo this
metamorphosis under any known conditions. Those who take a monistic
view of the physical world may fairly hold abiogenesis as a pious
opinion, supported by analogy and defended by our ignorance. But, as
matters stand, it is equally justifiable to regard the physical world
as a sort of dual monarchy. The kingdoms of living matter and of
not-living matter are under one system of laws, and there is a perfect
freedom of exchange and transit from one to the other. But no claim to
biological nationality is valid except birth.</p>
<p>In the department of anatomy and development, a host of accurate and
patient inquirers, aided by novel methods of preparation, which
enable the anatomist to exhaust the details of visible structure and
to reproduce them with geometrical precision, have investigated every
important group of living animals and plants, no less than the fossil
relics of former faunæ and floræ. An enormous addition has thus been
made to our knowledge, especially of the lower forms of life, and it
may be said that morphology, however inexhaustible in detail, is
complete in its broad features. Classification, which is merely a
convenient summary expression of morphological facts, has undergone a
corresponding improvement. The breaks which formerly separated our
groups from one another, as animals from plants, vertebrates from
invertebrates, cryptogams from phanerogams, have either been filled
up, or shown to have no theoretical significance. The question of the
position of man, as an animal, has given rise to much disputation,
with the result of proving that there is no anatomical or
developmental character by which he is more widely distinguished from
the group of animals most nearly allied to him, than they are from one
another. In fact, in this particular, the classification of Linnæus
has been proved to be more in accordance with the facts than those of
most of his successors.</p>
<p>The study of man, as a genus and species of the animal world,
conducted with reference to no other considerations than those which
would be admitted by the investigator of any other form of animal
life, has given rise to a special branch of biology, known, as
Anthropology, which has grown with great rapidity. Numerous societies
devoted to this portion of science have sprung up, and the energy of
its devotees has produced a copious literature. The physical
characters of the various races of men have been studied with a
minuteness and accuracy heretofore unknown; and demonstrative
evidence of the existence of human contemporaries of the extinct
animals of the latest geological epoch has been obtained, physical
science has thus been brought into the closest relation with history
and with archæology; and the striking investigations which, during our
time, have put beyond doubt the vast antiquity of Babylonian and
Egyptian civilisation, are in perfect harmony with the conclusions of
anthropology as to the antiquity of the human species.</p>
<p>Classification is a logical process which consists in putting together
those things which are like and keeping asunder those which are
unlike; and a morphological classification, of course, takes notes
only of morphological likeness and unlikeness. So long, therefore, as
our morphological knowledge was almost wholly confined to anatomy, the
characters of groups were solely anatomical; but as the phenomena of
embryology were explored, the likeness and unlikeness of individual
development had to be taken into account; and, at present, the study
of ancestral evolution introduces a new element of likeness and
unlikeness which is not only eminently deserving of recognition, but
must ultimately predominate over all others. A classification which
shall represent the process of ancestral evolution is, in fact, the
end which the labors of the philosophical taxonomist must keep in
view. But it is an end which cannot be attained until the progress of
palæontology has given us far more insight than we yet possess, into
the historical facts of the case. Much of the speculative 'phylogeny,'
which abounds among my present contemporaries, reminds me very
forcibly of the speculative morphology, unchecked by a knowledge of
development, which was rife in my youth. As hypothesis, suggesting
inquiry in this or that direction, it is often extremely useful; but,
when the product of such speculation is placed on a level with those
generalisations of morphological truths which are represented by the
definitions of natural groups, it tends to confuse fancy with fact and
to create mere confusion. We are in danger of drifting into a new
'Natur-Philosophie' worse than the old, because there is less excuse
for it. Boyle did great service to science by his 'Sceptical Chemist,'
and I am inclined to think that, at the present day, a 'Sceptical
Biologist' might exert an equally beneficent influence.</p>
<p>Whoso wishes to gain a clear conception of the progress of physiology,
since 1837, will do well to compare Müller's 'Physiology,' which
appeared in 1835, and Drapiez's edition of Richard's 'Nouveaux
Eléments de Botanique,' published in 1837, with any of the present
handbooks of animals and vegetable physiology. Müller's work was a
masterpiece, unsurpassed since the time of Haller, and Richard's book
enjoyed a great reputation at the time; but their successors transport
one into a new world. That which characterises the new physiology is
that it is permeated by, and indeed based upon, conceptions which,
though not wholly absent, are but dawning on the minds of the older
writers.</p>
<p>Modern physiology sets forth as its chief ends: Firstly, the
ascertainment of the facts and conditions of cell-life in general.
Secondly, in composite organisms, the analysis of the functions of
organs into those of the cells of which they are composed. Thirdly,
the explication of the processes by which this local cell-life is
directly, or indirectly, controlled and brought into relation with the
life of the rest of the cells which compose the organism. Fourthly,
the investigation of the phenomena of life in general, on the
assumption that the physical and chemical processes which take place
in the living body are of the same order as those which take place out
of it; and that whatever energy is exerted in producing such phenomena
is derived from the common stock of energy in the universe. In the
fifth place, modern physiology investigates the relation between
physical and psychical phenomena, on the assumption that molecular
changes in definite portions of nervous matter stand in the relation
of necessary antecedents to definite mental states and operations. The
work which has been done in each of the directions here indicated is
vast, and the accumulation of solid knowledge, which has been
effected, is correspondingly great. For the first time in the history
of science, physiologists are now in the position to say that they
have arrived at clear and distinct, though by no means complete,
conceptions of the manner in which the great functions of
assimilation, respiration, secretion, distribution of nutriment,
removal of waste products, motion, sensation, and reproduction are
performed; while the operation of the nervous system, as a regulative
apparatus, which influences the origination and the transmission of
manifestations of activity, either within itself or in other organs,
has been largely elucidated.</p>
<p>I have pointed out, in an earlier part of this chapter, that the
history of all branches of science proves that they must attain a
considerable stage of development before they yield practical
'fruits;' and this is eminently true of physiology. It is only within
the present epoch, that physiology and chemistry have reached the
point at which they could offer a scientific foundation to
agriculture; and it is only within the present epoch, that zoology and
physiology have yielded any very great aid to pathology and hygiene.
But within that time, they have already rendered highly important
services by the exploration of the phenomena of parasitism. Not only
have the history of the animal parasites, such as the tapeworms and
the trichina, which infest men and animals, with deadly results, been
cleared up by means of experimental investigations, and efficient
modes of prevention deduced from the data so obtained; but the
terrible agency of the parasitic fungi and of the infinitesimally
minute microbes, which work far greater havoc among plants and
animals, has been brought to light. The 'particulate' or 'germ' theory
of disease, as it is called, long since suggested, has obtained a firm
foundation, in so far as it has been proved to be true in respect of
sundry epidemic disorders. Moreover, it has theoretically justified
prophylactic measures, such as vaccination, which formerly rested on a
merely empirical basis; and it has been extended to other diseases
with excellent results. Further, just as the discovery of the cause of
scabies proved the absurdity of many of the old prescriptions for the
prevention and treatment of that disease; so the discovery of the
cause of splenic fever, and other such maladies, has given a new
direction to prophylactic and curative measures against the worst
scourges of humanity. Unless the fanaticism of philozoic sentiment
overpowers the voice of philanthropy, and the love of dogs and cats
supersedes that of one's neighbor, the progress of experimental
physiology and pathology will, indubitably, in course of time, place
medicine and hygiene upon a rational basis. Two centuries ago England
was devastated by the plague; cleanliness and common sense were enough
to free us from its ravages. One century since, small-pox was almost
as great a scourge; science, though working empirically, and almost in
the dark, has reduced that evil to relative insignificance. At the
present time, science, working in the light of clear knowledge, has
attacked splenic fever and has beaten it; it is attacking hydrophobia
with no mean promise of success; sooner or later it will deal, in the
same way, with diphtheria, typhoid and scarlet fever. To one who has
seen half a street swept clear of its children, or has lost his own by
these horrible pestilences, passing one's offspring through the fire
to Moloch seems humanity, compared with the proposal to deprive them
of half their chances of health and life because of the discomfort to
dogs and cats, rabbits and frogs, which may be involved in the search
for means of guarding them.</p>
<p>An immense extension has been effected in our knowledge of the
distribution of plants and animals; and the elucidation of the causes
which have brought about that distribution has been greatly advanced.
The establishment of meteorological observations by all civilised
nations, has furnished a solid foundation to climatology; while a
growing sense of the importance of the influence of the 'struggle for
existence' affords a wholesome check to the tendency to overrate the
influence of climate on distribution. Expeditions, such as that of the
Challenger,' equipped, not for geographical exploration and discovery,
but for the purpose of throwing light on problems of physical and
biological science, have been sent out by our own and other
Governments, and have obtained stores of information of the greatest
value. For the first time, we are in possession of something like
precise knowledge of the physical features of the deep seas, and of
the living population of the floor of the ocean. The careful and
exhaustive study of the phenomena presented by the accumulations of
snow and ice, in polar and mountainous regions, which has taken place
in our time, has not only revealed to the geologist an agent of
denudation and transport, which has slowly and quietly produced
effects, formerly confidently referred to diluvial catastrophes, but
it has suggested new methods of accounting for various puzzling facts
of distribution.</p>
<p>Palæontology, which treats of the extinct forms of life and their
succession and distribution upon our globe, a branch of science which
could hardly be said to exist a century ago, has undergone a wonderful
development in our epoch. In some groups of animals and plants, the
extinct representatives, already known, are more numerous and
important than the living. There can be no doubt that the existing
Fauna and Flora is but the last term of a long series of equally
numerous contemporary species, which have succeeded one another, by
the slow and gradual substitution of species for species, in the vast
interval of time which has elapsed between the deposition of the
earliest fossiliferous strata and the present day. There is no
reasonable ground for believing that the oldest remains yet obtained
carry us even near the beginnings of life. The impressive warnings of
Lyell against hasty speculations, based upon negative evidence, have
been fully justified; time after time, highly organised types have
been discovered in formations of an age in which the existence of such
forms of life had been confidently declared to be impossible. The
western territories of the United States alone have yielded a world of
extinct animal forms, undreamed of fifty years ago. And, wherever
sufficiently numerous series of the remains of any given group, which
has endured for a long space of time, are carefully examined, their
morphological relations are never in discordance with the requirements
of the doctrine of evolution, and often afford convincing evidence of
it. At the same time, it has been shown that certain forms persist
with very little change, from the oldest to the newest fossiliferous
formations; and thus show that progressive development is a
contingent, and not a necessary result, of the nature of living
matter.</p>
<p>Geology is, as it were, the biology of our planet as a whole. In so
far as it comprises the surface configuration and the inner structure
of the earth, it answers to morphology; in so far as it studies
changes of condition and their causes, it corresponds with physiology;
in so far as it deals with the causes which have effected the progress
of the earth from its earliest to its present state, it forms part of
the general doctrine of evolution. An interesting contrast between the
geology of the present day and that of half a century ago, is
presented by the complete emancipation of the modern geologist from
the controlling and perverting influence of theology, all-powerful at
the earlier date. As the geologist of my young days wrote, he had one
eye upon fact, and the other on Genesis; at present, he wisely keeps
both eyes on fact, and ignores the pentateuchal mythology altogether.
The publication of the 'Principles of Geology' brought upon its
illustrious author a period of social ostracism; the instruction given
to our children is based upon those principles. Whewell had the
courage to attack Lyell's fundamental assumption (which surely is a
dictate of common sense) that we ought to exhaust known causes before
seeking for the explanation of geological phenomena in causes of which
we have no experience. But geology has advanced to its present state
by working from Lyell's<SPAN name="FNanchor_J_10" id="FNanchor_J_10" /><SPAN href="#Footnote_J_10" class="fnanchor">[J]</SPAN> axiom; and, to this day, the record of the
stratified rocks affords no proof that the intensity or the rapidity
of the causes of change has ever varied, between wider limits, than
those between which the operations of nature have taken place in the
youngest geological epochs.</p>
<p>An incalculable benefit has accrued to geological science from the
accurate and detailed surveys, which have now been executed by skilled
geologists employed by the Governments of all parts of the civilised
world. In geology, the study of large maps is as important as it is
said to be in politics; and sections, on a true scale, are even more
important, in so far as they are essential to the apprehension of the
extraordinary insignificance of geological perturbations in relation
to the whole mass of our planet. It should never be forgotten that
what we call 'catastrophes,' are, in relation to the earth, changes,
the equivalents of which would be well represented by the development
of a few pimples, or the scratch of a pin, on a man's head. Vast
regions of the earth's surface remain geologically unknown; but the
area already fairly explored is many times greater than it was in
1837; and, in many parts of Europe and the United States, the
structure of the superficial crust of the earth has been investigated
with great minuteness.</p>
<p>The parallel between Biology and Geology, which I have drawn, is
further illustrated by the modern growth of that branch of the science
known as Petrology, which answers to Histology, and has made the
microscope as essential an instrument to the geological as to the
biological investigator.</p>
<p>The evidence of the importance of causes now in operation has been
wonderfully enlarged by the study of glacial phenomena; by that of
earthquakes and volcanoes; and by that of the efficacy of heat and
cold, wind, rain, and rivers as agents of denudation and transport. On
the other hand, the exploration of coral reefs and of the deposits now
taking place at the bottom of the great oceans, has proved that, in
animal and plant life, we have agents of reconstruction of a potency
hitherto unsuspected.</p>
<p>There is no study better fitted than that of geology to impress upon
men of general culture that conviction of the unbroken sequence of the
order of natural phenomena, throughout the duration of the universe,
which is the great, and perhaps the most important, effect of the
increase of natural knowledge.</p>
<p>THE END.</p>
<div style="break-after:column;"></div><br />