<h2><SPAN name="CHAPTER_XV" id="CHAPTER_XV">CHAPTER XV</SPAN></h2>
<h3>SCIENCE AND TRAVEL—THE VOYAGE OF THE BEAGLE</h3>
<p>Sir Charles Lyell, in his <i>Principles of Geology</i>, the first edition of
which appeared in 1830-1833, says: "If it be true that delivery be the
first, second, and third requisite in a popular orator, it is no less
certain that travel is of first, second, and third importance to those
who desire to originate just and comprehensive views concerning the
structure of our globe." The value of travel to science in general might
very well be illustrated by Lyell's own career, his study of the
mountainous regions of France, his calculation of the recession of
Niagara Falls and of the sedimentary deposits of the Mississippi, his
observations of the coal formations of Nova Scotia, and of the
composition of the Great Dismal Swamp of Virginia—suggestive of the
organic origin of the carboniferous rocks.</p>
<p>Although it is not with Lyell that we have here principally to deal, it
is not irrelevant to say that the main purpose of his work was to show
that all past changes in the earth's crust are referable to causes now
in operation. Differing from Hutton as to the part played in those
changes by subterranean heat, Lyell agreed with his forerunner in
ascribing geological transformations to "the slow agency of existing
causes." He was, in fact, the leader of the uniformitarians and opposed
those geologists who<span class="pagenum"><SPAN name="Page_198" id="Page_198">[Pg 198]</SPAN></span> held that the contemporary state of the earth's
crust was owing to a series of catastrophes, stupendous exhibitions of
natural force to which recent history offered no parallel. Also
enlightened as to the significance of organic remains in stratified
rock, Lyell in 1830 felt the need of further knowledge in reference to
the relation of the plants and animals represented in the fossils to the
fauna and flora now existing.</p>
<p>It is to Lyell's disciple, Charles Darwin, however, that we turn for our
main illustration of the value of travel for comprehensive scientific
generalization. Born, like another great liberator, on February 12,
1809, Darwin was only twenty-two years old when he received appointment
as naturalist on H.M.S. Beagle, about to sail from Devonport on a voyage
around the world. The main purpose of the expedition, under command of
the youthful Captain Fitzroy, three or four years older than Darwin, was
to make a survey of certain coasts in South America and the Pacific
Islands, and to carry a line of chronometrical measurements about the
globe. Looking back in 1876 on this memorable expedition, the naturalist
wrote, "The voyage of the Beagle has been by far the most important
event in my life, and has determined my whole career." In spite of the
years he had spent at school and college he regarded this experience as
the first real training or education of his mind.</p>
<p>Darwin had studied medicine at Edinburgh, but found surgery distasteful.
He moved to Cambridge, with the idea of becoming a clergyman of the
Established Church. As a boy he had attended with his<span class="pagenum"><SPAN name="Page_199" id="Page_199">[Pg 199]</SPAN></span> mother, daughter
of Josiah Wedgwood, the Unitarian services. At Cambridge he graduated
without distinction at the beginning of 1831. It should be said,
however, that the traditional studies were particularly ill suited to
his cast of mind, that he had not been idle, and had developed
particular diligence in different branches of science, and above all as
a collector.</p>
<p>He was six feet tall, fond of shooting and hunting, and able to ride
seventy-five or eighty miles without tiring. He had shown himself at
college fond of company, and a little extravagant. He was, though a
sportsman, extremely humane; had a horror of inflicting pain, and such
repugnance at the thought of slavery that he quarreled violently with
Captain Fitzroy when the latter condoned the abomination. Darwin was
not, however, of a turbulent disposition. Sir James Sulivan, who had
accompanied the expedition as second lieutenant, said many years after:
"I can confidently express my belief that during the five years in the
Beagle, he was never known to be out of temper, or to say one unkind or
hasty word <i>of</i> or <i>to</i> any one."</p>
<p>Darwin's father was remarkable for his powers of observation, while the
grandfather, Erasmus Darwin, is well known for his tendency to
speculation. Charles Darwin possessed both these mental characteristics
in an eminent degree. One who has conversed with him reports that what
impressed him most in meeting the great naturalist was his clear blue
eyes, which seemed to possess almost telescopic vision, and that the
really remarkable thing about Darwin was that he saw more than other
people. At<span class="pagenum"><SPAN name="Page_200" id="Page_200">[Pg 200]</SPAN></span> the same time it will scarcely be denied that his vision was
as much marked by insight as by careful observation, that his reasoning
was logical and singularly tenacious, and his imagination vivid. It was
before this supreme seer that the panorama of terrestrial creation was
displayed during a five years' voyage.</p>
<p>No one can read Darwin's <i>Journal</i> descriptive of the voyage of the
Beagle and continue to entertain any doubts in reference to his æsthetic
sense and poetic appreciation of the various moods of nature. Throughout
the voyage the scenery was for him the most constant and highest source
of enjoyment. His emotions responded to the glories of tropical
vegetation in the Brazilian forests, and to the sublimity of Patagonian
wastes and the forest-clad hills of Tierra del Fuego. "It is easy,"
writes the gifted adolescent, "to specify the individual objects of
admiration in these grand scenes; but it is not possible to give an
adequate idea of the higher feelings of wonder, astonishment, and
devotion, which fill and elevate the mind." Similarly, on the heights of
the Andes, listening to the stones borne seaward day and night by the
mountain torrents, Darwin remarked: "The sound spoke eloquently to the
geologist; the thousands and thousands of stones, which striking against
each other, made the one dull uniform sound, were all hurrying in one
direction. It was like thinking on time, where the minute that now
glides past is irrecoverable. So was it with these stones, the ocean is
their eternity, and each note of that wild music told of one more step
towards their destiny."</p>
<p><span class="pagenum"><SPAN name="Page_201" id="Page_201">[Pg 201]</SPAN></span></p>
<p>When the Beagle left Devonport, December 27, 1831, the young naturalist
was without any theory, and when the ship entered Falmouth harbor,
October 2, 1836, though he felt the need of a theory in reference to the
relations of the various species of plants and animals, he had not
formulated one. It was not till 1859 that his famous work on the <i>Origin
of Species</i> appeared. He went merely as a collector, and frequently in
the course of the voyage felt a young man's misgivings as to whether his
collections would be of value to his Cambridge professors and other
mature scientists.</p>
<p>Professor Henslow, the botanist, through whom Darwin had been offered
the opportunity to accompany the expedition, had presented his pupil
with the first volume of Lyell's <i>Principles of Geology</i>. (Perhaps,
after Lyell, the most potent influence on Darwin's mind at this time was
that of Humboldt and other renowned travelers, whose works he read with
avidity.) At the Cape Verde Islands he made some interesting
observations of a white calcareous stratum which ran for miles along the
coast at a height of about forty-five feet above the water. It rested on
volcanic rocks and was itself covered with basalt, that is, lava which
had crystallized under the sea. It was evident that subsequently to the
formation of the basalt that portion of the coast containing the white
stratum had been elevated. The shells in the stratum were recent, that
is, corresponded to those still to be found on the neighboring coast. It
occurred to Darwin that the voyage might afford material for a book on
geology. Later in the voyage, having read portions of his <i>Journal</i> to
Captain<span class="pagenum"><SPAN name="Page_202" id="Page_202">[Pg 202]</SPAN></span> Fitzroy, Darwin was encouraged to believe that this also might
prove worthy of publication.</p>
<p>Darwin's account of his adventures and manifold observations is so
informal, so rich in detail, as not to admit of summary. His eye took in
the most diverse phenomena, the color of the sea or of rivers, clouds of
butterflies and of locusts, the cacique with his little boy clinging to
the side of a horse in headlong flight, the great earthquake on the
coast of Chile, the endless variety of plant and animal life, the
superstition of savage and <i>padre</i>, the charms of Tahiti, the
unconscious humor of his mountain guides for whom at an altitude of
eleven thousand feet "the cursed pot (which was a new one) did not
choose to boil potatoes"—all found response in Darwin's open mind;
everything was grist to his mill. Any selection from the richness of the
original is almost sure to show a tendency not obvious in the <i>Journal</i>.
On the other hand, it is just such multiplicity of phenomena as the
<i>Journal</i> mirrors that impels every orderly mind to seek for causes, for
explanation. The human intellect cannot rest till law gives form to the
wild chaos of fact.</p>
<p>No disciple of Lyell could fail to be convinced of the immeasurable
lapse of time required for the formation of the earth's crust. For this
principle Darwin found abundant evidence during the years spent in South
America. On the heights of the Andes he found marine shell fossils at a
height of fourteen thousand feet above sea-level. That such an elevation
of submarine strata should be achieved by forces still at Nature's
command might well test the faith of the most ardent disciple. Of how
great those<span class="pagenum"><SPAN name="Page_203" id="Page_203">[Pg 203]</SPAN></span> forces are Darwin received demonstration on the coast of
Chile in 1835. Under date of February 12, he writes: "This day has been
memorable in the annals of Valdivia for the most severe earthquake
experienced by the oldest inhabitant.... A bad earthquake destroys our
oldest associations; the earth, the very emblem of solidity, has moved
beneath our feet like a thin crust over a fluid." He observed that the
most remarkable effect of this earthquake was the permanent elevation of
the land. Around the Bay of Concepcion it was raised two or three feet,
while at the island of Santa Maria the elevation was much greater; "on
one part Captain Fitzroy found beds of putrid mussel shells <i>still
adhering to the rocks</i>, ten feet above high-water mark." On the same day
the volcanoes of South America were active. The area from under which
volcanic matter was actually erupted was 720 miles in one line and 400
in another at right angles to it. Great as is the force at work, ages
are required to produce a range of mountains like the Cordilleras;
moreover, progress is not uniform and subsidence may alternate with
elevation. It was on the principle of the gradual subsidence (and
elevation) of the bed of the Pacific Ocean that Darwin accounted for the
formation of coral reefs. Nothing "is so unstable as the level of the
crust of this earth."</p>
<p>Closely associated with the evidence of the immensity of the force of
volcanic action and the infinitude of time elapsed, Darwin had testimony
of the multitude of plant and animal species, some gigantic, others
almost infinitely small, some living, others extinct. We know that his
thought was greatly<span class="pagenum"><SPAN name="Page_204" id="Page_204">[Pg 204]</SPAN></span> affected by his discovery in Uruguay and Patagonia
of the fossil remains of extinct mammals, all the more so because they
seemed to bear relationship to particular living species and at the same
time to show likeness to other species. The Toxodon (bow-tooth), for
example, was a gigantic rodent whose fossil remains were discovered in
the same region where Darwin found living the capybara, a rodent as
large as a pig; at the same time the extinct species showed in its
structure certain affinities to the Edentata (sloths, ant-eaters,
armadillos). Other fossils represented gigantic forms distinctly of the
edentate order and comparable to the Cape ant-eater and the Great
Armadillo (<i>Dasypus gigas</i>). Again, remains were found of a
thick-skinned non-ruminant with certain structural likeness to the
Camelidæ, to which the living species of South American ruminants, the
<i>guanacos</i>, belong.</p>
<p>Why have certain species ceased to exist? As the individual sickens and
dies, so certain species become rare and extinct. Darwin found in
Northern Patagonia evidence of the <i>Equus curvidens</i>, an extinct species
of native American horse. What had caused this species to die out?
Imported horses were introduced at Buenos Ayres in 1537, and so
flourished in the wild state that in 1580 they were found as far south
as the Strait of Magellan. Darwin was well fitted by the
comprehensiveness of his observations to deal with the various factors
of extinction and survival. He studied the species in their natural
setting, the habitat, and range, and habits, and food of the different
varieties. Traveling for three years and a half north and south on the
continent of South<span class="pagenum"><SPAN name="Page_205" id="Page_205">[Pg 205]</SPAN></span> America, he noticed one species replacing another,
perhaps closely allied, species. Of the carrion-feeding hawks the condor
has an immense range, but shows a predilection for perpendicular cliffs.
If an animal die on the plain the polyborus has prerogative of feeding
first, and is followed by the turkey buzzard and the gallinazo. European
horses and cattle running wild in the Falkland Islands are somewhat
modified; the horse as a species degenerating, the cattle increasing in
size and tending to form varieties of different color. The soil being
soft the hoofs of the horse grow long and produce lameness. Again, on
the mainland, the niata, a breed of cattle supposed to have originated
among the Indians south of the Plata, are, on account of the projection
of the lower jaw, unable to browse as effectually as other breeds. This
renders them liable to destruction in times of drought. A similar
variation in structure had characterized a species of extinct ruminant
in India.</p>
<p>How disastrous a great drought might prove to the cattle of the Pampas
is shown by the records of 1825 and of 1830. So little rain fell that
there was a complete failure of vegetation. The loss of cattle in one
province alone was estimated at one million. Of one particular herd of
twenty thousand not a single one survived. Darwin had many other
instances of nature's devastations. After the Beagle sailed from the
Plata, December 6, 1833, vast numbers of butterflies were seen as far as
the eye could range in bands of countless myriads. "Before sunset a
strong breeze sprung up from the north, and this must have caused tens
of thousands of the butterflies and other<span class="pagenum"><SPAN name="Page_206" id="Page_206">[Pg 206]</SPAN></span> insects to perish." Two or
three months before this he had ocular proof of the effect of a
hailstorm, which in a very limited area killed twenty deer, fifteen
ostriches, numbers of ducks, hawks, and partridges. In the war of
extermination that was ever before the great naturalist's eye in South
America, what is it that favors a species' survival or determines its
extinction?</p>
<p>Not only is the struggle between the animals and inanimate nature, the
plants and inanimate nature, plant and animal, rival animals, and rival
plants; it goes on between man and his environment, and, very fiercely,
between man and man. Darwin was moved by intense indignation at the
slavery on the east coast and the cruel oppression of the laborer on the
west coast. He was in close contact with the sanguinary political
struggles of South America, and with a war of attempted extermination
against the Indian. He refers to the shocking but "unquestionable fact,
that [in the latter struggle] all the women who appear above twenty
years old are massacred in cold blood! When I exclaimed that this
appeared rather inhuman, he [the informant] answered, 'Why, what can be
done? they breed so!'"</p>
<p>In all his travels nothing that Darwin beheld made a deeper impression
on his sensitive mind than primitive man. "Of individual objects,
perhaps nothing is more certain to create astonishment than the first
sight in his native haunt of a barbarian—of man in his lowest and most
savage state. One's mind hurries back over past centuries, and then
asks, could our progenitors have been men like these?... I do not
believe it is possible to describe or paint the dif<span class="pagenum"><SPAN name="Page_207" id="Page_207">[Pg 207]</SPAN></span>ference between
savage and civilized man." It was at Tierra del Fuego that he was
particularly shocked. He admired the Tahitians; he pitied the natives of
Tasmania, corralled like wild animals and forced to migrate; he thought
the black aborigines of Australia had been underestimated and remarked
with regret that their numbers were decreasing through their association
with civilized man, the introduction of spirits, the increased
difficulty of procuring food, and contact with European diseases. In
this last cause tending to bring about extinction there was a mysterious
element. In Chile his scientific acumen had been baffled in the attempt
to explain the invasion of the strange and dreadful disease hydrophobia.
In Australia the problem of the transmission to the natives of various
diseases, even by Europeans in apparent health, confronted his
intelligence. "The varieties of man seem to act on each other in the
same way as different specimens of animals—the stronger always
extirpating the weaker."</p>
<p>It was at Wollaston Island, near Cape Horn, however, that Darwin saw
savage men held in extremity by the hard conditions of life, and at bay.
They had neither food, nor shelter, nor clothing. They stood absolutely
naked as the sleet fell on them and melted. At night, "naked and
scarcely protected from the wind and rain of this tempestuous climate,"
they slept on the wet ground coiled up like animals. They subsisted on
shell fish, putrid whale's blubber, or a few tasteless berries and
fungi. At war, the different tribes are cannibals. Darwin writes, "It is
certainly true, that when pressed in winter by hunger, they kill and
devour their old women before they kill their<span class="pagenum"><SPAN name="Page_208" id="Page_208">[Pg 208]</SPAN></span> dogs." A native boy, when
asked by a traveler why they do this, had answered, "Doggies catch
otters, old women no." In such hard conditions what are the
characteristics that would determine the survival of individual or
tribe? One might be tempted to lay almost exclusive emphasis on physical
strength, but Darwin was too wise ultimately to answer thus the question
that for six or seven years was forming in his accurate and
discriminating mind.</p>
<p>On its way west in the Pacific the Beagle spent a month at the Galapagos
Archipelago, which lies under the equator five or six hundred miles from
the mainland. "Most of the organic productions are aboriginal creations,
found nowhere else; there is even a difference between the inhabitants
of the different islands; yet all show a marked relationship with those
of America." Why should the plants and animals of the islands resemble
those of the mainland, or the inhabitants of one island differ from
those of a neighboring island? Darwin had always held that species were
created immutable, and that it was impossible for one species to give
rise to another.</p>
<p>In the Galapagos Archipelago he found only one species of terrestrial
mammal, a new species of mouse, and that only on the most easterly
island of the group. On the South American continent there were at least
forty species of mice, those east of the Andes being distinct from those
on the west coast. Of land-birds he obtained twenty-six kinds,
twenty-five of which were to be found nowhere else. Among these, a hawk
seemed in structure intermediate between the buzzard and polyborus, as
though it had been modified and induced to take over the functions of
the South Ameri<span class="pagenum"><SPAN name="Page_209" id="Page_209">[Pg 209]</SPAN></span>can carrion-hawk. There were three species of
mocking-thrush, two of them confined to one island each. There were
thirteen species of finches, all peculiar to the archipelago. In the
different species of geospiza there is a perfect gradation in the size
of the beaks, only to be appreciated by seeing the specimens or their
illustrations.</p>
<p>Few of the birds were of brilliant coloration. The same was true of the
plants and insects. Darwin looked in vain for one brilliant flower. This
was in marked contrast to the fauna and flora of the South American
tropics. The coloration of the species suggested comparison with that of
the plants and animals of Patagonia. Amid brilliant tropical plants
brilliant plumage may afford means of concealment, as well as being a
factor in the securing of mates.</p>
<p>Darwin found the reptiles the most striking feature of the zoölogy of
the islands. They seem to take the place of the herbivorous mammalia.
The huge tortoise (<i>Testudo nigra</i>) native in the archipelago is so
heavy as to be lifted only by six or eight men. (The young naturalist
frequently got on the back of a tortoise, but as it moved forward under
his encouragement, he found it very difficult to keep his balance.)
Different varieties, if not species, characterize the different islands.
Of the other reptilia should be noted two species of lizard of a genus
(<i>Amblyrhynchus</i>) confined to the Galapagos Islands. One, aquatic, a
yard long, fifteen pounds in weight, with "limbs and strong claws
admirably adapted for crawling over the rugged and fissured masses of
lava," feeds on seaweed. When frightened it instinctively shuns the
water, as though it feared especially its<span class="pagenum"><SPAN name="Page_210" id="Page_210">[Pg 210]</SPAN></span> aquatic enemies. The
terrestrial species is confined to the central part of the group; it is
smaller than the aquatic species, and feeds on cactus, leaves of trees,
and berries.</p>
<p>Fifteen new species of sea-fish were obtained, distributed in twelve
genera. The archipelago, though not rich in insects, afforded several
new genera, each island with its distinct kinds. The flora of the
Galapagos Islands proved equally distinctive. More than half of the
flowering plants are native, and the species of the different islands
show wonderful differences. For example, of seventy-one species found on
James Island thirty-eight are confined to the archipelago and thirty to
this one island.</p>
<p>In October the Beagle sailed west to Tahiti, New Zealand, Australia,
Keeling or Cocos Islands, Mauritius, St. Helena, Ascension; arrived at
Bahia, Brazil, August 1, 1836; and finally proceeded from Brazil to
England. Among his many observations, Darwin noted the peculiar animals
of Australia, the kangaroo-rat, and "several of the famous
<i>Ornithorhynchus paradoxus</i>," or duckbill. On the Keeling or Cocos
Islands the chief vegetable production is the cocoanut. Here Darwin
observed crabs of monstrous size, with a structure which enabled them to
open the cocoanuts. They thus secured their food, and accumulated
"surprising quantities of the picked fibres of the cocoanut husk, on
which they rest as a bed."</p>
<p>In preparing his <i>Journal</i> for publication in the autumn of 1836 the
young naturalist saw how many facts pointed to the common descent of
species. He thought that by collecting all facts that bore on the<span class="pagenum"><SPAN name="Page_211" id="Page_211">[Pg 211]</SPAN></span>
variation of plants and animals, wild or domesticated, light might be
thrown on the whole subject. "I worked on true Baconian principles, and,
without any theory, collected facts on a wholesale scale." He saw that
pigeon-fanciers and stock-breeders develop certain types by preserving
those variations that have the desired characteristics. This is a
process of artificial selection. How is selection made by Nature?</p>
<p>In 1838 he read Malthus' <i>Essay on the Principle of Population</i>, which
showed how great and rapid, without checks like war and disease, the
increase in number of the human race would be. He had seen something in
his travels of rivalry for the means of subsistence. He now perceived
"that under these circumstances favorable variations would tend to be
preserved, and unfavorable ones to be destroyed. The results of this
would be the formation of a new species." As special breeds are
developed by artificial selection, so new species evolve by a process of
natural selection. Those genera survive which give rise to species
adapted to new conditions of existence.</p>
<p>In 1858, before Darwin had published his theory, he received from
another great traveler, Alfred Russel Wallace, then at Ternate in the
Moluccas, a manuscript essay, setting forth an almost identical view of
the development of new species through the survival of the fittest in
the struggle for existence.</p>
<p><span class="pagenum"><SPAN name="Page_212" id="Page_212">[Pg 212]</SPAN></span></p>
<h3>REFERENCES</h3>
<div class="hanging-indent">
<p>Charles Darwin, <i>A Naturalist's Journal</i>.</p>
<p>Francis Darwin, <i>The Life and Letters of Charles Darwin</i>.</p>
<p>W. A. Locy, <i>Biology and its Makers</i> (third revised edition), chap.
<span class="smcap lowercase">XIX</span>.</p>
<p>G. J. Romanes, <i>Darwin and After Darwin</i>, vol. <span class="smcap lowercase">I</span>.</p>
<p>A. R. Wallace, <i>Darwinism</i>.</p>
<p>See also John W. Judd, <i>The Coming of Evolution</i> (The Cambridge
Manuals of Science and Literature).</p>
</div>
<hr class="chap" />
<p><span class="pagenum"><SPAN name="Page_213" id="Page_213">[Pg 213]</SPAN></span></p>
<div style="break-after:column;"></div><br />