<h2 id="sigil_toc_id_77">CHAPTER IX.</h2>
<h3 id="sigil_toc_id_78">THE CONSEQUENCES OF A DEVIATION.</h3>
<p>Barbicane had now no fear of the issue of the journey, at least as
far as the projectile's impulsive force was concerned; its own speed
would carry it beyond the neutral line; it would certainly not return
to earth; it would certainly not remain motionless on the line of
attraction. One single hypothesis remained to be realized, the
arrival of the projectile at its destination by the action of the
lunar attraction.</p>
<p>It was in reality a fall of 8296 leagues on an orb, it is true,
where weight could only be reckoned at one-sixth of terrestrial
weight; a formidable fall, nevertheless, and one against which every
precaution must be taken without delay.</p>
<p>These precautions were of two sorts, some to deaden the shock when
the projectile should touch the lunar soil, others to delay the fall,
and consequently make it less violent.</p>
<p>To deaden the shock, it was a pity that Barbicane was no longer
able to employ the means which had so ably weakened the shock at
departure, that is to say, by water used as springs and the
partition-breaks.</p>
<p>The partitions still existed but water failed, for they could not
use their reserve, which was precious, in case during the first days
the liquid element should be found wanting on lunar soil.</p>
<p>And indeed this reserve would have been quite insufficient for a
spring. The layer of water stored in the projectile at their
departure, and on which the waterproof disc lay, occupied no less
than three feet in depth, and spread over a surface of not less than
fifty-four square feet. Besides, the cistern did not contain one
fifth part of it; they must therefore give up this efficient means of
deadening the shock of arrival. Happily, Barbicane, not content with
employing water, had furnished the movable disc with strong spring
plugs, destined to lessen the shock against the base after the
breaking of the horizontal partitions. These plugs still existed;
they had only to readjust them and replace the movable disc; every
piece, easy to handle, as their weight was now scarcely felt, was
quickly mounted.</p>
<p>The different pieces were fitted without trouble, it being only a
matter of bolts and screws; tools were not wanting, and soon the
reinstated disc lay on its steel plugs, like a table on its legs. One
inconvenience resulted from the replacing of the disc, the lower
window was blocked up; thus it was impossible for the travellers to
observe the moon from that opening while they were being precipitated
perpendicularly upon her; but they were obliged to give it up; even
by the side openings they could still see vast lunar regions, as an
aeronaut sees the earth from his car.</p>
<p>This replacing of the disc was at least an hour's work. It was
past twelve when all preparations were finished. Barbicane took fresh
observations on the inclination of the projectile, but to his
annoyance it had not turned over sufficiently for its fall; it seemed
to take a curve parallel to the lunar disc. The orb of night shone
splendidly into space, while opposite, the orb of day blazed with
fire.</p>
<p>Their situation began to make them uneasy.</p>
<p>"Are we reaching our destination?" said Nicholl.</p>
<p>"Let us act as if we were about reaching it," replied
Barbicane.</p>
<p>"You are sceptical," retorted Michel Ardan. "We shall arrive, and
that, too, quicker than we like."</p>
<p>This answer brought Barbicane back to his preparations, and he
occupied himself with placing the contrivances intended to break
their descent. We may remember the scene of the meeting held at Tampa
Town, in Florida, when Captain Nicholl came forward as Barbicane's
enemy and Michel Ardan's adversary. To Captain Nicholl's maintaining
that the projectile would smash like glass, Michel replied that he
would break their fall by means of rockets properly placed.</p>
<p>Thus, powerful fireworks, taking their starting-point from the
base and bursting outside, could, by producing a recoil, check to a
certain degree the projectile's speed. These rockets were to burn in
space, it is true; but oxygen would not fail them, for they could
supply themselves with it, like the lunar volcanoes, the burning of
which has never yet been stopped by the want of atmosphere round the
moon.</p>
<p>Barbicane had accordingly supplied himself with these fireworks,
enclosed in little steel guns, which could be screwed on to the base
of the projectile. Inside, these guns were flush with the bottom;
outside, they protruded about eighteen inches. There were twenty of
them. An opening left in the disc allowed them to light the match
with which each was provided. All the effect was felt outside. The
burning mixture had been already rammed into each gun. They had,
then, nothing to do but to raise the metallic buffers fixed in the
base, and replace them by the guns, which fitted closely in their
places.</p>
<p>This new work was finished about three o'clock, and after taking
all these precautions there remained but to wait. But the projectile
was perceptibly nearing the moon, and evidently succumbed to her
influence to a certain degree; though its own velocity also drew it
in an oblique direction. From these conflicting influences resulted a
line which might become a tangent. But it was certain that the
projectile would not fall directly on the moon; for its lower part,
by reason of its weight, ought to be turned towards her.</p>
<p>Barbicane's uneasiness increased as he saw his projectile resist
the influence of gravitation. The Unknown was opening before him, the
Unknown in interplanetary space. The man of science thought he had
foreseen the only three hypotheses possible—the return to the earth,
the return to the moon, or stagnation on the neutral line; and here a
fourth hypothesis, big with all the terrors of the Infinite, surged
up inopportunely. To face it without flinching, one must be a
resolute savant like Barbicane, a phlegmatic being like Nicholl, or
an audacious adventurer like Michel Ardan.</p>
<p>Conversation was started upon this subject. Other men would have
considered the question from a practical point of view; they would
have asked themselves whither their projectile carriage was carrying
them. Not so with these; they sought for the cause which produced
this effect.</p>
<p>"So we have become diverted from our route," said Michel; "but
why?"</p>
<p>"I very much fear," answered Nicholl, "that, in spite of all
precautions taken, the Columbiad was not fairly pointed. An error,
however small, would be enough to throw us out of the moon's
attraction."</p>
<p>"Then they must have aimed badly?" asked Michel.</p>
<p>"I do not think so," replied Barbicane. "The perpendicularity of
the gun was exact, its direction to the zenith of the spot
incontestible; and the moon passing to the zenith of the spot, we
ought to reach it at the full. There is another reason, but it
escapes me."</p>
<p>"Are we not arriving too late?" asked Nicholl.</p>
<p>"Too late?" said Barbicane.</p>
<p>"Yes," continued Nicholl. "The Cambridge Observatory's note says
that the transit ought to be accomplished in ninety-seven hours
thirteen minutes and twenty seconds; which means to say, that _sooner_
the moon will _not_ be at the point indicated, and that _later_ it will
have passed it."</p>
<p>"True," replied Barbicane. "But we started the 1st of December, at
thirteen minutes and twenty-five seconds to eleven at night; and we
ought to arrive on the 5th at midnight, at the exact moment when the
moon would be full; and we are now at the 5th of December. It is now
half past three in the evening; half past eight ought to see us at
the end of our journey. Why do we not arrive?"</p>
<p>"Might it not be an excess of speed?" answered Nicholl; "for we
know now that its initial velocity was greater than they
supposed."</p>
<p>"No! a hundred times, No!" replied Barbicane. "An excess of speed,
if the direction of the projectile had been right, would not have
prevented us reaching the moon. No, there has been a deviation. We
have been turned out of our course."</p>
<p>"By whom? by what?" asked Nicholl.</p>
<p>"I cannot say," replied Barbicane.</p>
<p>"Very well, then, Barbicane," said Michel, "do you wish to know my
opinion on the subject of finding out this deviation?"</p>
<p>"Speak."</p>
<p>"I would not give half a dollar to know it. That we have deviated
is a fact. Where we are going to matters little; we shall soon see.
Since we are being borne along in space we shall end by falling into
some centre of attraction or other."</p>
<p>Michel Ardan's indifference did not content Barbicane. Not that he
was uneasy about the future, but he wanted to know at any cost <i>why</i>
his projectile had deviated.</p>
<p>But the projectile continued its course sideways to the moon, and
with it the mass of things thrown out. Barbicane could even prove, by
the elevations which served as landmarks upon the moon, which was
only 2000 leagues distant, that its speed was becoming uniform—fresh
proof that there was no fall. Its impulsive force still prevailed
over the lunar attraction, but the projectile's course was certainly
bringing it nearer to the moon, and they might hope that at a nearer
point the weight, predominating, would cause a decided fall.</p>
<p>The three friends, having nothing better to do, continued their
observations; but they could not yet determine the topographical
position of the satellite; every relief was levelled under the
reflection of the solar rays.</p>
<p>They watched thus through the side windows until eight o'clock at
night. The moon had then grown so large in their eyes that it filled
half of the firmament. The sun on one side, and the orb of night on
the other, flooded the projectile with light.</p>
<p>At that moment Barbicane thought he could estimate the distance
which separated them from their aim at no more than 700 leagues. The
speed of the projectile seemed to him to be more than 200 yards, or
about 170 leagues a second. Under the centripetal force, the base of
the projectile tended towards the moon; but the centrifugal still
prevailed; and it was probable that its rectilineal course would be
changed to a curve of some sort, the nature of which they could not
at present determine.</p>
<p>Barbicane was still seeking the solution of his insoluble problem.
Hours passed without any result. The projectile was evidently
<i>nearing</i> the moon, but it was also evident that it would never
<i>reach</i> her. As to the nearest distance at which it would pass
her, that must be the result of the two forces, attraction and
repulsion, affecting its motion.</p>
<p>"I ask but one thing," said Michel; "that we may pass near enough
to penetrate her secrets."</p>
<p>"Cursed be the thing that has caused our projectile to deviate
from its course," cried Nicholl.</p>
<p>And, as if a light had suddenly broken in upon his mind, Barbicane
answered, "Then cursed be the meteor which crossed our path."</p>
<p>"What?" said Michel Ardan.</p>
<p>"What do you mean?" exclaimed Nicholl.</p>
<p>"I mean," said Barbicane in a decided tone, "I mean that our
deviation is owing solely to our meeting with this erring body."</p>
<p>"But it did not even brush us as it passed," said Michel.</p>
<p>"What does that matter? Its mass, compared to that of our
projectile, was enormous, and its attraction was enough to influence
our course."</p>
<p>"So little?" cried Nicholl.</p>
<p>"Yes, Nicholl; but however little it might be," replied Barbicane,
"in a distance of 84,000 leagues, it wanted no more to make us miss
the moon."</p>
<div style="break-after:column;"></div><br />