<h2>GEOMETRY AND EXPERIENCE</h2>
<h3>An expanded form of an Address to the Prussian Academy of Sciences in Berlin on January 27th, 1921.</h3>
<p>One reason why mathematics enjoys special esteem, above all other
sciences, is that its laws are absolutely certain and indisputable,
while those of all other sciences are to some extent debatable and
in constant danger of being overthrown by newly discovered facts.
In spite of this, the investigator in another department of science
would not need to envy the mathematician if the laws of mathematics
referred to objects of our mere imagination, and not to objects
of reality. For it cannot occasion surprise that different persons
should arrive at the same logical conclusions when they have already
agreed upon the fundamental laws (axioms), as well as the methods
by which other laws are to be deduced therefrom. But there is another
reason for the high repute of mathematics, in that it is mathematics
which affords the exact natural sciences a certain measure of
security, to which without mathematics they could not attain.</p>
<p>At this point an enigma presents itself which in all ages has agitated
inquiring minds. How can it be that mathematics, being after all
a product of human thought which is independent of experience, is
so admirably appropriate to the objects of reality? Is human reason,
then, without experience, merely by taking thought, able to fathom
the properties of real things.</p>
<p>In my opinion the answer to this question is, briefly, this:—As far
as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.
It seems to me that complete clearness as to this state of things
first became common property through that new departure in mathematics
which is known by the name of mathematical logic or “Axiomatics.”
The progress achieved by axiomatics consists in its having neatly
separated the logical-formal from its objective or intuitive
content; according to axiomatics the logical-formal alone forms
the subject-matter of mathematics, which is not concerned with the
intuitive or other content associated with the logical-formal.</p>
<p>Let us for a moment consider from this point of view any axiom of
geometry, for instance, the following:—Through two points in space
there always passes one and only one straight line. How is this
axiom to be interpreted in the older sense and in the more modern
sense?</p>
<p>The older interpretation:—Every one knows what a straight line
is, and what a point is. Whether this knowledge springs from an
ability of the human mind or from experience, from some collaboration
of the two or from some other source, is not for the mathematician
to decide. He leaves the question to the philosopher. Being based
upon this knowledge, which precedes all mathematics, the axiom
stated above is, like all other axioms, self-evident, that is, it
is the expression of a part of this <i>à priori</i> knowledge.</p>
<p>The more modern interpretation:—Geometry treats of entities which
are denoted by the words straight line, point, etc. These entities
do not take for granted any knowledge or intuition whatever, but
they presuppose only the validity of the axioms, such as the one
stated above, which are to be taken in a purely formal sense, i.e.
as void of all content of intuition or experience. These axioms are
free creations of the human mind. All other propositions of geometry
are logical inferences from the axioms (which are to be taken in
the nominalistic sense only). The matter of which geometry treats
is first defined by the axioms. Schlick in his book on epistemology has
therefore characterised axioms very aptly as “implicit definitions.”</p>
<p>This view of axioms, advocated by modern axiomatics, purges mathematics
of all extraneous elements, and thus dispels the mystic obscurity
which formerly surrounded the principles of mathematics.</p>
<p>But a presentation of its principles thus clarified makes it also
evident that mathematics as such cannot predicate anything about
perceptual objects or real objects. In axiomatic geometry the words
“point,” “straight line,” etc., stand only for empty conceptual
schemata. That which gives them substance is not relevant to
mathematics.</p>
<p>Yet on the other hand it is certain that mathematics generally,
and particularly geometry, owes its existence to the need which
was felt of learning something about the relations of real things
to one another. The very word geometry, which, of course, means
earth-measuring, proves this. For earth-measuring has to do with
the possibilities of the disposition of certain natural objects
with respect to one another, namely, with parts of the earth,
measuring-lines, measuring-wands, etc. It is clear that the system
of concepts of axiomatic geometry alone cannot make any assertions
as to the relations of real objects of this kind, which we will
call practically-rigid bodies. To be able to make such assertions,
geometry must be stripped of its merely logical-formal character
by the co-ordination of real objects of experience with the empty
conceptual frame-work of axiomatic geometry. To accomplish this,
we need only add the proposition:—Solid bodies are related, with
respect to their possible dispositions, as are bodies in Euclidean
geometry of three dimensions. Then the propositions of Euclid contain
affirmations as to the relations of practically-rigid bodies.</p>
<p>Geometry thus completed is evidently a natural science; we may in
fact regard it as the most ancient branch of physics. Its affirmations
rest essentially on induction from experience, but not on logical
inferences only. We will call this completed geometry “practical
geometry,” and shall distinguish it in what follows from “purely
axiomatic geometry.” The question whether the practical geometry
of the universe is Euclidean or not has a clear meaning, and its
answer can only be furnished by experience. All linear measurement
in physics is practical geometry in this sense, so too is geodetic
and astronomical linear measurement, if we call to our help the
law of experience that light is propagated in a straight line, and
indeed in a straight line in the sense of practical geometry.</p>
<p>I attach special importance to the view of geometry which I
have just set forth, because without it I should have been unable
to formulate the theory of relativity. Without it the following
reflection would have been impossible:—In a system of reference
rotating relatively to an inert system, the laws of disposition of
rigid bodies do not correspond to the rules of Euclidean geometry
on account of the Lorentz contraction; thus if we admit non-inert
systems we must abandon Euclidean geometry. The decisive step in
the transition to general co-variant equations would certainly not
have been taken if the above interpretation had not served as a
stepping-stone. If we deny the relation between the body of axiomatic
Euclidean geometry and the practically-rigid body of reality,
we readily arrive at the following view, which was entertained by
that acute and profound thinker, H. Poincaré:—Euclidean geometry
is distinguished above all other imaginable axiomatic geometries
by its simplicity. Now since axiomatic geometry by itself contains
no assertions as to the reality which can be experienced, but can
do so only in combination with physical laws, it should be possible
and reasonable—whatever may be the nature of reality—to retain
Euclidean geometry. For if contradictions between theory and
experience manifest themselves, we should rather decide to change
physical laws than to change axiomatic Euclidean geometry. If we
deny the relation between the practically-rigid body and geometry,
we shall indeed not easily free ourselves from the convention
that Euclidean geometry is to be retained as the simplest. Why
is the equivalence of the practically-rigid body and the body of
geometry—which suggests itself so readily—denied by Poincaré and
other investigators? Simply because under closer inspection the
real solid bodies in nature are not rigid, because their geometrical
behaviour, that is, their possibilities of relative disposition,
depend upon temperature, external forces, etc. Thus the original,
immediate relation between geometry and physical reality appears
destroyed, and we feel impelled toward the following more general
view, which characterizes Poincaré’s standpoint. Geometry (G)
predicates nothing about the relations of real things, but only
geometry together with the purport (P) of physical laws can do so.
Using symbols, we may say that only the sum of (G) + (P) is subject
to the control of experience. Thus (G) may be chosen arbitrarily,
and also parts of (P); all these laws are conventions. All that
is necessary to avoid contradictions is to choose the remainder of
(P) so that (G) and the whole of (P) are together in accord with
experience. Envisaged in this way, axiomatic geometry and the part
of natural law which has been given a conventional status appear
as epistemologically equivalent.</p>
<p><i>Sub specie aeterni</i> Poincaré, in my opinion, is right. The idea
of the measuring-rod and the idea of the clock co-ordinated with it
in the theory of relativity do not find their exact correspondence
in the real world. It is also clear that the solid body and the
clock do not in the conceptual edifice of physics play the part of
irreducible elements, but that of composite structures, which may
not play any independent part in theoretical physics. But it is my
conviction that in the present stage of development of theoretical
physics these ideas must still be employed as independent ideas;
for we are still far from possessing such certain knowledge
of theoretical principles as to be able to give exact theoretical
constructions of solid bodies and clocks.</p>
<p>Further, as to the objection that there are no really rigid bodies
in nature, and that therefore the properties predicated of rigid
bodies do not apply to physical reality,—this objection is by
no means so radical as might appear from a hasty examination. For
it is not a difficult task to determine the physical state of a
measuring-rod so accurately that its behaviour relatively to other
measuring-bodies shall be sufficiently free from ambiguity to allow
it to be substituted for the “rigid” body. It is to measuring-bodies
of this kind that statements as to rigid bodies must be referred.</p>
<p>All practical geometry is based upon a principle which is accessible
to experience, and which we will now try to realise. We will
call that which is enclosed between two boundaries, marked upon a
practically-rigid body, a tract. We imagine two practically-rigid
bodies, each with a tract marked out on it. These two tracts are
said to be “equal to one another” if the boundaries of the one tract
can be brought to coincide permanently with the boundaries of the
other. We now assume that:</p>
<p>If two tracts are found to be equal once and anywhere, they are
equal always and everywhere.</p>
<p>Not only the practical geometry of Euclid, but also its nearest
generalisation, the practical geometry of Riemann, and therewith
the general theory of relativity, rest upon this assumption. Of the
experimental reasons which warrant this assumption I will mention
only one. The phenomenon of the propagation of light in empty space
assigns a tract, namely, the appropriate path of light, to each
interval of local time, and conversely. Thence it follows that
the above assumption for tracts must also hold good for intervals
of clock-time in the theory of relativity. Consequently it may be
formulated as follows:—If two ideal clocks are going at the same
rate at any time and at any place (being then in immediate proximity
to each other), they will always go at the same rate, no matter where
and when they are again compared with each other at one place.—If
this law were not valid for real clocks, the proper frequencies
for the separate atoms of the same chemical element would not be
in such exact agreement as experience demonstrates. The existence
of sharp spectral lines is a convincing experimental proof of the
above-mentioned principle of practical geometry. This is the ultimate
foundation in fact which enables us to speak with meaning of the
mensuration, in Riemann’s sense of the word, of the four-dimensional
continuum of space-time.</p>
<p>The question whether the structure of this continuum is Euclidean,
or in accordance with Riemann’s general scheme, or otherwise,
is, according to the view which is here being advocated, properly
speaking a physical question which must be answered by experience,
and not a question of a mere convention to be selected on practical
grounds. Riemann’s geometry will be the right thing if the laws
of disposition of practically-rigid bodies are transformable into
those of the bodies of Euclid’s geometry with an exactitude which
increases in proportion as the dimensions of the part of space-time
under consideration are diminished.</p>
<p>It is true that this proposed physical interpretation of geometry
breaks down when applied immediately to spaces of sub-molecular
order of magnitude. But nevertheless, even in questions as
to the constitution of elementary particles, it retains part of
its importance. For even when it is a question of describing the
electrical elementary particles constituting matter, the attempt
may still be made to ascribe physical importance to those ideas
of fields which have been physically defined for the purpose
of describing the geometrical behaviour of bodies which are large
as compared with the molecule. Success alone can decide as to the
justification of such an attempt, which postulates physical reality
for the fundamental principles of Riemann’s geometry outside of the
domain of their physical definitions. It might possibly turn out
that this extrapolation has no better warrant than the extrapolation
of the idea of temperature to parts of a body of molecular order
of magnitude.</p>
<p>It appears less problematical to extend the ideas of practical
geometry to spaces of cosmic order of magnitude. It might, of course,
be objected that a construction composed of solid rods departs more
and more from ideal rigidity in proportion as its spatial extent
becomes greater. But it will hardly be possible, I think, to assign
fundamental significance to this objection. Therefore the question
whether the universe is spatially finite or not seems to me
decidedly a pregnant question in the sense of practical geometry.
I do not even consider it impossible that this question will be
answered before long by astronomy. Let us call to mind what the
general theory of relativity teaches in this respect. It offers
two possibilities:—</p>
<p>1. The universe is spatially infinite. This can be so only if the
average spatial density of the matter in universal space, concentrated
in the stars, vanishes, i.e. if the ratio of the total mass of the
stars to the magnitude of the space through which they are scattered
approximates indefinitely to the value zero when the spaces taken
into consideration are constantly greater and greater.</p>
<p>2. The universe is spatially finite. This must be so, if there is
a mean density of the ponderable matter in universal space differing
from zero. The smaller that mean density, the greater is the volume
of universal space.</p>
<p>I must not fail to mention that a theoretical argument can be adduced in
favour of the hypothesis of a finite universe. The general theory
of relativity teaches that the inertia of a given body is greater as
there are more ponderable masses in proximity to it; thus it seems
very natural to reduce the total effect of inertia of a body to
action and reaction between it and the other bodies in the universe,
as indeed, ever since Newton’s time, gravity has been completely
reduced to action and reaction between bodies. From the equations
of the general theory of relativity it can be deduced that this
total reduction of inertia to reciprocal action between masses—as
required by E. Mach, for example—is possible only if the universe
is spatially finite.</p>
<p>On many physicists and astronomers this argument makes no impression.
Experience alone can finally decide which of the two possibilities
is realised in nature. How can experience furnish an answer? At first
it might seem possible to determine the mean density of matter by
observation of that part of the universe which is accessible to our
perception. This hope is illusory. The distribution of the visible
stars is extremely irregular, so that we on no account may venture
to set down the mean density of star-matter in the universe as
equal, let us say, to the mean density in the Milky Way. In any
case, however great the space examined may be, we could not feel
convinced that there were no more stars beyond that space. So it
seems impossible to estimate the mean density. But there is another
road, which seems to me more practicable, although it also presents
great difficulties. For if we inquire into the deviations shown
by the consequences of the general theory of relativity which are
accessible to experience, when these are compared with the consequences
of the Newtonian theory, we first of all find a deviation which
shows itself in close proximity to gravitating mass, and has been
confirmed in the case of the planet Mercury. But if the universe
is spatially finite there is a second deviation from the Newtonian
theory, which, in the language of the Newtonian theory, may be
expressed thus:—The gravitational field is in its nature such as
if it were produced, not only by the ponderable masses, but also by
a mass-density of negative sign, distributed uniformly throughout
space. Since this factitious mass-density would have to be enormously
small, it could make its presence felt only in gravitating systems
of very great extent.</p>
<p>Assuming that we know, let us say, the statistical distribution
of the stars in the Milky Way, as well as their masses, then by
Newton’s law we can calculate the gravitational field and the mean
velocities which the stars must have, so that the Milky Way should
not collapse under the mutual attraction of its stars, but should
maintain its actual extent. Now if the actual velocities of the stars,
which can, of course, be measured, were smaller than the calculated
velocities, we should have a proof that the actual attractions
at great distances are smaller than by Newton’s law. From such a
deviation it could be proved indirectly that the universe is finite.
It would even be possible to estimate its spatial magnitude.</p>
<p>Can we picture to ourselves a three-dimensional universe which is
finite, yet unbounded?</p>
<p>The usual answer to this question is “No,” but that is not the right
answer. The purpose of the following remarks is to show that the
answer should be “Yes.” I want to show that without any extraordinary
difficulty we can illustrate the theory of a finite universe by
means of a mental image to which, with some practice, we shall soon
grow accustomed.</p>
<p>First of all, an observation of epistemological nature. A
geometrical-physical theory as such is incapable of being directly
pictured, being merely a system of concepts. But these concepts
serve the purpose of bringing a multiplicity of real or imaginary
sensory experiences into connection in the mind. To “visualise”
a theory, or bring it home to one’s mind, therefore means to give
a representation to that abundance of experiences for which the
theory supplies the schematic arrangement. In the present case we
have to ask ourselves how we can represent that relation of solid
bodies with respect to their reciprocal disposition (contact) which
corresponds to the theory of a finite universe. There is really
nothing new in what I have to say about this; but innumerable
questions addressed to me prove that the requirements of those who
thirst for knowledge of these matters have not yet been completely
satisfied.</p>
<p>So, will the initiated please pardon me, if part of what I shall
bring forward has long been known?</p>
<p>What do we wish to express when we say that our space is infinite?
Nothing more than that we might lay any number whatever of bodies
of equal sizes side by side without ever filling space. Suppose
that we are provided with a great many wooden cubes all of the
same size. In accordance with Euclidean geometry we can place them
above, beside, and behind one another so as to fill a part of space
of any dimensions; but this construction would never be finished;
we could go on adding more and more cubes without ever finding
that there was no more room. That is what we wish to express when
we say that space is infinite. It would be better to say that space
is infinite in relation to practically-rigid bodies, assuming that
the laws of disposition for these bodies are given by Euclidean
geometry.</p>
<p>Another example of an infinite continuum is the plane. On a plane
surface we may lay squares of cardboard so that each side of any
square has the side of another square adjacent to it. The construction
is never finished; we can always go on laying squares—if their laws
of disposition correspond to those of plane figures of Euclidean
geometry. The plane is therefore infinite in relation to the
cardboard squares. Accordingly we say that the plane is an infinite
continuum of two dimensions, and space an infinite continuum of
three dimensions. What is here meant by the number of dimensions,
I think I may assume to be known.</p>
<p>Now we take an example of a two-dimensional continuum which is
finite, but unbounded. We imagine the surface of a large globe and
a quantity of small paper discs, all of the same size. We place
one of the discs anywhere on the surface of the globe. If we move
the disc about, anywhere we like, on the surface of the globe,
we do not come upon a limit or boundary anywhere on the journey.
Therefore we say that the spherical surface of the globe is an
unbounded continuum. Moreover, the spherical surface is a finite
continuum. For if we stick the paper discs on the globe, so that
no disc overlaps another, the surface of the globe will finally
become so full that there is no room for another disc. This simply
means that the spherical surface of the globe is finite in relation
to the paper discs. Further, the spherical surface is a non-Euclidean
continuum of two dimensions, that is to say, the laws of disposition
for the rigid figures lying in it do not agree with those of the
Euclidean plane. This can be shown in the following way. Place
a paper disc on the spherical surface, and around it in a circle
place six more discs, each of which is to be surrounded in turn
by six discs, and so on. If this construction is made on a plane
surface, we have an uninterrupted disposition in which there are
six discs touching every disc except those which lie on the outside.</p>
<ANTIMG src="images/figure_1.png" alt="[Figure 1: Disks packed onto a plane]">
<p>On the spherical surface the construction also seems to promise
success at the outset, and the smaller the radius of the disc
in proportion to that of the sphere, the more promising it seems.
But as the construction progresses it becomes more and more patent
that the disposition of the discs in the manner indicated, without
interruption, is not possible, as it should be possible by Euclidean
geometry of the the plane surface. In this way creatures which
cannot leave the spherical surface, and cannot even peep out from
the spherical surface into three-dimensional space, might discover,
merely by experimenting with discs, that their two-dimensional
“space” is not Euclidean, but spherical space.</p>
<p>From the latest results of the theory of relativity it is probable
that our three-dimensional space is also approximately spherical,
that is, that the laws of disposition of rigid bodies in it are
not given by Euclidean geometry, but approximately by spherical
geometry, if only we consider parts of space which are sufficiently
great. Now this is the place where the reader’s imagination boggles.
“Nobody can imagine this thing,” he cries indignantly. “It can be
said, but cannot be thought. I can represent to myself a spherical
surface well enough, but nothing analogous to it in three dimensions.”</p>
<ANTIMG src="images/figure_2.png" alt="[Figure 2: A circle projected from the sphere unto a plane]">
<p>We must try to surmount this barrier in the mind, and the patient
reader will see that it is by no means a particularly difficult
task. For this purpose we will first give our attention once more
to the geometry of two-dimensional spherical surfaces. In the adjoining
figure let <i>K</i> be the spherical surface, touched at <i>S</i> by a plane,
<i>E</i>, which, for facility of presentation, is shown in the drawing
as a bounded surface. Let <i>L</i> be a disc on the spherical surface.
Now let us imagine that at the point <i>N</i> of the spherical surface,
diametrically opposite to <i>S</i>, there is a luminous point, throwing
a shadow <i>L′</i> of the disc <i>L</i> upon the plane <i>E</i>. Every point on
the sphere has its shadow on the plane. If the disc on the sphere
<i>K</i> is moved, its shadow <i>L′</i> on the plane <i>E</i> also moves. When the
disc <i>L</i> is at <i>S</i>, it almost exactly coincides with its shadow.
If it moves on the spherical surface away from <i>S</i> upwards, the
disc shadow <i>L′</i> on the plane also moves away from <i>S</i> on the plane
outwards, growing bigger and bigger. As the disc <i>L</i> approaches the
luminous point <i>N</i>, the shadow moves off to infinity, and becomes
infinitely great.</p>
<p>Now we put the question, What are the laws of disposition of the
disc-shadows <i>L′</i> on the plane <i>E</i>? Evidently they are exactly the
same as the laws of disposition of the discs <i>L</i> on the spherical
surface. For to each original figure on <i>K</i> there is a corresponding
shadow figure on <i>E</i>. If two discs on <i>K</i> are touching, their
shadows on <i>E</i> also touch. The shadow-geometry on the plane agrees
with the the disc-geometry on the sphere. If we call the disc-shadows
rigid figures, then spherical geometry holds good on the plane <i>E</i>
with respect to these rigid figures. Moreover, the plane is finite
with respect to the disc-shadows, since only a finite number of
the shadows can find room on the plane.</p>
<p>At this point somebody will say, “That is nonsense. The disc-shadows
are <i>not</i> rigid figures. We have only to move a two-foot rule about
on the plane <i>E</i> to convince ourselves that the shadows constantly
increase in size as they move away from <i>S</i> on the plane towards
infinity.” But what if the two-foot rule were to behave on the
plane <i>E</i> in the same way as the disc-shadows <i>L′</i>? It would then
be impossible to show that the shadows increase in size as they
move away from <i>S</i>; such an assertion would then no longer have
any meaning whatever. In fact the only objective assertion that can
be made about the disc-shadows is just this, that they are related
in exactly the same way as are the rigid discs on the spherical
surface in the sense of Euclidean geometry.</p>
<p>We must carefully bear in mind that our statement as to the growth
of the disc-shadows, as they move away from <i>S</i> towards infinity,
has in itself no objective meaning, as long as we are unable to
employ Euclidean rigid bodies which can be moved about on the plane
<i>E</i> for the purpose of comparing the size of the disc-shadows. In
respect of the laws of disposition of the shadows <i>L′</i>, the point
<i>S</i> has no special privileges on the plane any more than on the
spherical surface.</p>
<p>The representation given above of spherical geometry on the
plane is important for us, because it readily allows itself to be
transferred to the three-dimensional case.</p>
<p>Let us imagine a point <i>S</i> of our space, and a great number
of small spheres, <i>L′</i>, which can all be brought to coincide with
one another. But these spheres are not to be rigid in the sense
of Euclidean geometry; their radius is to increase (in the sense
of Euclidean geometry) when they are moved away from <i>S</i> towards
infinity, and this increase is to take place in exact accordance
with the same law as applies to the increase of the radii of the
disc-shadows <i>L′</i> on the plane.</p>
<p>After having gained a vivid mental image of the geometrical behaviour
of our <i>L′</i> spheres, let us assume that in our space there are no
rigid bodies at all in the sense of Euclidean geometry, but only
bodies having the behaviour of our <i>L′</i> spheres. Then we shall
have a vivid representation of three-dimensional spherical space,
or, rather of three-dimensional spherical geometry. Here our spheres
must be called “rigid” spheres. Their increase in size as they depart
from <i>S</i> is not to be detected by measuring with measuring-rods,
any more than in the case of the disc-shadows on <i>E</i>, because the
standards of measurement behave in the same way as the spheres. Space
is homogeneous, that is to say, the same spherical configurations
are possible in the environment of all points.<sup><SPAN href="#Footnote_1">*</SPAN>
</sup> Our space is finite, because, in consequence of
the “growth” of the spheres, only a finite number of them can find
room in space.</p>
<p><small><SPAN name="Footnote_1">*</SPAN> This is
intelligible without calculation—but only for the two-dimensional
case—if we revert once more to the case of the disc on the surface
of the sphere.</small></p>
<p>In this way, by using as stepping-stones the practice in thinking
and visualisation which Euclidean geometry gives us, we have acquired
a mental picture of spherical geometry. We may without difficulty
impart more depth and vigour to these ideas by carrying out special
imaginary constructions. Nor would it be difficult to represent the
case of what is called elliptical geometry in an analogous manner.
My only aim to-day has been to show that the human faculty of
visualisation is by no means bound to capitulate to non-Euclidean
geometry.</p>
<div style="break-after:column;"></div><br />