<h2>CHAPTER XIV.</h2>
<h3>HOW DEW IS FORMED.</h3>
<p>Reader, did you ever live in the country? Were you ever awakened early
on a summer's morning to "go for the cows"? Did you ever wade through a
wheat field in June—or the long grass of a meadow—when the pearly
dewdrops hung in clusters on the bearded grain, shining like brilliants
in the morning sun? Have you not seen the blades of grass studded with
diamonds more beautiful than any that ever flashed in the dazzling light
of a ballroom? If not, you have missed a picture that otherwise would
have been hung on the walls of your memory, that no one could rob you
of.</p>
<p>Everyone has noticed that at certain times in the year the grass becomes
wet in the evening and grows more so till the sun rises the next day and
dispels the moisture, and this when no cloud is seen. Dew is as old as
the fields in which grass grows. It was as familiar to the ancients as
it is to us, and yet it is only about three-quarters of a century since<span class="pagenum"><SPAN name="Page_116" id="Page_116"></SPAN></span>
the cause of it has been understood. We even yet speak of the dew
"falling" like rain. In former times some scientists supposed that it
was a fine rain that fell from the higher regions of the atmosphere.
Others supposed it to be an emanation from the earth, while still others
supposed it was an exudation from the stars.</p>
<div class="blockquot"><p>"By his knowledge the depths are broken up and the clouds
drop down dew" (Prov. iii. 20).</p>
</div>
<p>The first experiments carried on in a scientific way were by Dr. Wells,
a physician of London, between the years 1811 and 1814.</p>
<p>Everyone has noticed in warm weather the familiar phenomenon of water
condensed into drops on the outside of a pitcher or tumbler containing
cold water. This condensation is dew. It always forms when the
conditions are right, summer and winter. In cold weather we call it
frost. It has been stated in a former chapter on evaporation that the
capacity of the air for holding moisture in a transparent form depends
upon its temperature. If the temperature is at the freezing point it
will contain the 160th part of the atmosphere's own weight as aqueous
vapor. If it is 60 degrees Fahrenheit the air will retain six grains of
transparent moisture to the square foot of air, while at 80 degrees it
will contain nearly eleven grains. When the air<span class="pagenum"><SPAN name="Page_117" id="Page_117"></SPAN></span> is charged with this
vapor to the point of saturation (which point varies with the
temperature) a slight depression of the temperature is sufficient to
condense this vapor into cloud or drops of water. Between 1812 and 1814
Dr. Wells made a series of experiments with flocks of cotton wool. He
weighed out pieces of equal weight and attached a number of them to the
upper side of a board and as many more to the lower side, and exposed it
to the night air under varying conditions. One experiment was made with
a board four feet from the earth, so that half of the bunches of cotton
faced the ground and the other half the sky. He found upon weighing
these after a night's exposure under a clear sky that the cotton wool on
top of the board had gained fourteen grains in weight from the moisture,
or dew, that had formed upon it, while the same amount of cotton on the
under side of the board had only increased four grains. He tried further
experiments by making little paper houses, or boxes, to cover a certain
portion of grass or vegetation. He found that while there would be a
heavy dew on the grass outside there was little or none within the
inclosure. These experiments were conducted in various ways and closely
watched to see that none of the phenomena were in any way connected with
falling rain. It has been determined that substances like grass and
green<span class="pagenum"><SPAN name="Page_118" id="Page_118"></SPAN></span> leaves of all kinds, hay and straw, while they are poor
conductors of heat, are excellent radiators. In another chapter we have
referred to this quality of straw, that is taken advantage of by the
inhabitants of hot countries in the manufacture of ice and in our own
land for storing it.</p>
<p>Perhaps everyone who has lived in the country has noticed that on a
summer's morning when the grass is laden with dewdrops a gravel walk or
a dusty road will be perfectly dry. This is due to the fact that the
gravel will retain heat and not radiate it, for a much longer time than
grass or green leaves. Dew begins to form upon the grass very soon after
the sun is set because the moment the sun's rays are withdrawn the heat
is rapidly radiated by the blades of grass, which cools the earth under
it and the air above and surrounding it, so that if the air is anywhere
near the moisture saturation point on cooling at the surface of the
ground it will readily give up a part of its moisture, which condenses
in drops upon the blades of grass.</p>
<p>If the night is still and clear and there is much moisture in the air,
the dew will be heavy, but if the night is cloudy there will be little
or no dew formed. The clouds form a screen between the earth and the
upper regions of the atmosphere, which prevents the heat from radiating
to a sufficient extent to form<span class="pagenum"><SPAN name="Page_119" id="Page_119"></SPAN></span> dew. For the same reason no dew will
form under a light covering spread over the ground even at some distance
above it. The covering acts as a screen, which prevents the heat from
radiating to the dew point. From what has gone before it will be seen
that if the atmosphere is not charged with moisture up to the point of
saturation it will require a greater amount of depression of temperature
to cause condensation, and this is why we usually have heavier dews in
June when the air is more highly charged with moisture than we do in
August when it is dry. This also accounts for the ice clouds, called
cirrus, being formed so high up in the atmosphere during dry weather.
There is so little moisture in the air that it requires a very great
difference of temperature to cause condensation to take place, and the
necessary depression is not reached in these cases except at an altitude
of several miles.</p>
<p>Dr. Wells has shown that if we take the reading of two thermometers on a
clear summer night, one of them lying on the grass and the other
suspended two feet above it, we shall find that the one lying on the
grass will read 8 or 10 degrees lower than the one suspended in the air.
If the night is still there will be a cold stratum of air next to the
earth, which will not tend to diffuse itself to a very great degree and
dew will form. If, however, it is cloudy or the wind is blowing there is
rarely<span class="pagenum"><SPAN name="Page_120" id="Page_120"></SPAN></span> any formation of dew. The reason in the former case, as we have
explained, is that the radiated heat is held down to the earth in a
measure, and in the latter case there is a constant change of air; so
that in either case no part of it is allowed to cool down sufficiently
to precipitate moisture.</p>
<p>It is a curious fact that often there will be a heavier dew under the
blaze of a full moon on a clear night than at any other time. The moon
has no screens about it of any kind to obstruct the free radiation of
heat. It is supposed to be a dead cinder floating in space and not
surrounded by an atmosphere, so that the sun's rays have full effect
upon it during the time it is exposed to them, and at that time it
becomes heated to a temperature of something like 750 degrees
Fahrenheit. For half the month, say, the sun is shining continuously
upon all or a part of it. In other words, the days and nights of the
moon are about two weeks long. The moon does not revolve upon its own
axis like the earth, therefore the same side or a portion of it is
exposed to the sun for 14 days. During the time that the moon is in the
earth's shadow it is supposed to fall to 187 degrees below zero, which
is 219 degrees below the freezing point. When the moon is full and is
heated up to over 700 degrees there is sufficient heat radiating from it
to be felt sensibly upon the face of the earth, and it<span class="pagenum"><SPAN name="Page_121" id="Page_121"></SPAN></span> would be felt if
it were not for the great envelope of atmosphere and its attendant cloud
formations that surround the earth. There are but few days in summer
when there is not a haze in the atmosphere, although we call the sky
clear, which intensifies the light and gives everything a warmer tone.
The heat coming from a full moon on a clear night is absorbed in causing
the aqueous vapors that are partly condensed in the higher regions of
the atmosphere, to be reabsorbed into transparent vapor. This clears
away the heat screen in the atmosphere and allows radiation to go on
more rapidly at the earth's surface, and thus cools it to a greater
extent when the moon is shining brightly than when it is dark and in the
shadow of the earth.</p>
<p>As we have already mentioned, the cold that is produced by radiation
through the blades of grass and other radiating substances may be
indicated by placing one thermometer on the ground and fixing another at
some point in the air. Sometimes the difference is very marked,
amounting to as much as 20 or 30 degrees. If under these conditions a
cloud floats overhead, forming a heat screen, its presence will be
readily noticed by a rise in the thermometer. Radiation into the upper
regions of the atmosphere is checked, which causes a sudden rise in the
temperature near the surface of the earth. By taking advantage of this
principle<span class="pagenum"><SPAN name="Page_122" id="Page_122"></SPAN></span> of heat radiation from the earth's surface it is a very easy
matter to protect tender vegetation from even quite a severe frost, if
it occurs in the early fall, by a slight covering, such as thin paper.
The paper will act as a heat screen and in a measure prevent the heat
from radiating from the earth immediately under it. Frost—which of
course is but frozen dew—at this season of the year will form on a
still autumn night, although the atmosphere at some distance above the
ground is some degrees above the freezing point. The reason for this
will be obvious when we consider the facts that have been set forth
concerning the power of radiation to produce cold.</p>
<p>It has been estimated by meteorologists that the amount of water
condensed upon the surface of the earth in the form of dew amounts to as
much as five inches, or about one-seventh of the whole amount of
moisture that is evaporated into the air. It will thus be seen that dew
performs an important part in supporting vegetation.</p>
<p>The same operation in nature's great workshop that forms the dews of
summer creates the frosts of winter. The moisture in cold weather is
condensed the same as in warm. When it is condensed at the surface of
the earth we have the phenomenon of frost, but when condensed in the
upper regions of the atmosphere we have that of snow.<span class="pagenum"><SPAN name="Page_123" id="Page_123"></SPAN></span></p>
<p>Heat radiation from the earth goes on in winter, which is evidenced by
the fact that a thick covering of snow is a great benefit to vegetation
as a protection against the injurious effects of frost. The writer has
seen flowers blooming abundantly at an altitude of 12,000 feet above the
sea-level, protected only by the friendly shelter of a snowbank. In some
cases the blooming flowers were in actual contact with the snow. By
experiment it has been determined that the earth under a thick coating
of snow is usually warmer by nine or ten degrees than the air
immediately above the snow covering.</p>
<hr style="width: 65%;" /><p><span class="pagenum"><SPAN name="Page_124" id="Page_124"></SPAN></span></p>
<div style="break-after:column;"></div><br />