<h3><SPAN name="BRINKLEY" id="BRINKLEY"></SPAN>BRINKLEY.</h3>
<p>Provost Baldwin held absolute sway in the University of Dublin for
forty-one years. His memory is well preserved there. The Bursar
still dispenses the satisfactory revenues which Baldwin left to the
College. None of us ever can forget the marble angels round the
figure of the dying Provost on which we used to gaze during the pangs
of the Examination Hall.</p>
<p>Baldwin died in 1785, and was succeeded by Francis Andrews, a Fellow
of seventeen years' standing. As to the scholastic acquirements of
Andrews, all I can find is a statement that he was complimented by
the polite Professors of Padua on the elegance and purity with which
he discoursed to them in Latin. Andrews was also reputed to be a
skilful lawyer. He was certainly a Privy Councillor and a prominent
member of the Irish House of Commons, and his social qualities were
excellent. Perhaps it was Baldwin's example that stimulated a desire
in Andrews to become a benefactor to his college. He accordingly
bequeathed a sum of 3,000 pounds and an annual income of 250 pounds
wherewith to build and endow an astronomical Observatory in the
University. The figures just stated ought to be qualified by the
words of cautious Ussher (afterwards the first Professor of
Astronomy), that "this money was to arise from an accumulation of a
part of his property, to commence upon a particular contingency
happening to his family." The astronomical endowment was soon in
jeopardy by litigation. Andrews thought he had provided for his
relations by leaving to them certain leasehold interests connected
with the Provost's estate. The law courts, however, held that these
interests were not at the disposal of the testator, and handed them
over to Hely Hutchinson, the next Provost. The disappointed
relations then petitioned the Irish Parliament to redress this
grievance by transferring to them the moneys designed by Andrews for
the Observatory. It would not be right, they contended, that the
kindly intentions of the late Provost towards his kindred should be
frustrated for the sake of maintaining what they described as "a
purely ornamental institution." The authorities of the College
protested against this claim. Counsel were heard, and a Committee of
the House made a report declaring the situation of the relations to
be a hard one. Accordingly, a compromise was made, and the dispute
terminated.</p>
<p>The selection of a site for the new astronomical Observatory was made
by the Board of Trinity College. The beautiful neighbourhood of
Dublin offered a choice of excellent localities. On the north side
of the Liffey an Observatory could have been admirably placed, either
on the remarkable promontory of Howth or on the elevation of which
Dunsink is the summit. On the south side of Dublin there are several
eminences that would have been suitable: the breezy heaths at
Foxrock combine all necessary conditions; the obelisk hill at
Killiney would have given one of the most picturesque sites for an
Observatory in the world; while near Delgany two or three other good
situations could be mentioned. But the Board of those pre-railway
days was naturally guided by the question of proximity. Dunsink was
accordingly chosen as the most suitable site within the distance of a
reasonable walk from Trinity College.</p>
<p>The northern boundary of the Phoenix Park approaches the little river
Tolka, which winds through a succession of delightful bits of sylvan
scenery, such as may be found in the wide demesne of Abbotstown and
the classic shades of Glasnevin. From the banks of the Tolka, on the
opposite side of the park, the pastures ascend in a gentle slope to
culminate at Dunsink, where at a distance of half a mile from the
stream, of four miles from Dublin, and at a height of 300 feet above
the sea, now stands the Observatory. From the commanding position of
Dunsink a magnificent view is obtained. To the east the sea is
visible, while the southern prospect over the valley of the Liffey is
bounded by a range of hills and mountains extending from Killiney to
Bray Head, thence to the little Sugar Loaf, the Two Rock and the
Three Rock Mountains, over the flank of which the summit of the Great
Sugar Loaf is just perceptible. Directly in front opens the fine
valley of Glenasmole, with Kippure Mountain, while the range can be
followed to its western extremity at Lyons. The climate of Dunsink
is well suited for astronomical observation. No doubt here, as
elsewhere in Ireland, clouds are abundant, but mists or haze are
comparatively unusual, and fogs are almost unknown.</p>
<p>The legal formalities to be observed in assuming occupation exacted a
delay of many months; accordingly, it was not until the 10th
December, 1782, that a contract could be made with Mr. Graham Moyers
for the erection of a meridian-room and a dome for an equatorial, in
conjunction with a becoming residence for the astronomer. Before the
work was commenced at Dunsink, the Board thought it expedient to
appoint the first Professor of Astronomy. They met for this purpose
on the 22nd January, 1783, and chose the Rev. Henry Ussher, a Senior
Fellow of Trinity College, Dublin. The wisdom of the appointment was
immediately shown by the assiduity with which Ussher engaged in
founding the observatory. In three years he had erected the
buildings and equipped them with instruments, several of which were
of his own invention. On the 19th of February, 1785, a special grant
of 200 pounds was made by the Board to Dr. Ussher as some recompense
for his labours. It happened that the observatory was not the only
scientific institution which came into being in Ireland at this
period; the newly-kindled ardour for the pursuit of knowledge led, at
the same time, to the foundation of the Royal Irish Academy. By a
fitting coincidence, the first memoir published in the "Transactions
Of The Royal Irish Academy," was by the first Andrews, Professor of
Astronomy. It was read on the 13th of June, 1785, and bore the
title, "Account of the Observatory belonging to Trinity College," by
the Rev. H. Ussher, D.D., M.R.I.A., F.R.S. This communication shows
the extensive design that had been originally intended for Dunsink,
only a part of which was, however, carried out. For instance, two
long corridors, running north and south from the central edifice,
which are figured in the paper, never developed into bricks and
mortar. We are not told why the original scheme had to be
contracted; but perhaps the reason may be not unconnected with a
remark of Ussher's, that the College had already advanced from its
own funds a sum considerably exceeding the original bequest. The
picture of the building shows also the dome for the South equatorial,
which was erected many years later.</p>
<p>Ussher died in 1790. During his brief career at the observatory, he
observed eclipses, and is stated to have done other scientific work.
The minutes of the Board declare that the infant institution had
already obtained celebrity by his labours, and they urge the claims
of his widow to a pension, on the ground that the disease from which
he died had been contracted by his nightly vigils. The Board also
promised a grant of fifty guineas as a help to bring out Dr. Ussher's
sermons. They advanced twenty guineas to his widow towards the
publication of his astronomical papers. They ordered his bust to be
executed for the observatory, and offered "The Death of Ussher" as
the subject of a prize essay; but, so far as I can find, neither the
sermons nor the papers, neither the bust nor the prize essay, ever
came into being.</p>
<p>There was keen competition for the chair of Astronomy which the death
of Ussher vacated. The two candidates were Rev. John Brinkley, of
Caius College, Cambridge, a Senior Wrangler (born at Woodbridge,
Suffolk, in 1763), and Mr. Stack, Fellow of Trinity College, Dublin,
and author of a book on Optics. A majority of the Board at first
supported Stack, while Provost Hely Hutchinson and one or two others
supported Brinkley. In those days the Provost had a veto at
elections, so that ultimately Stack was withdrawn and Brinkley was
elected. This took place on the 11th December, 1790. The national
press of the day commented on the preference shown to the young
Englishman, Brinkley, over his Irish rival. An animated controversy
ensued. The Provost himself condescended to enter the lists and to
vindicate his policy by a long letter in the "Public Register" or
"Freeman's Journal," of 21st December, 1790. This letter was
anonymous, but its authorship is obvious. It gives the
correspondence with Maskelyne and other eminent astronomers, whose
advice and guidance had been sought by the Provost. It also contends
that "the transactions of the Board ought not to be canvassed in the
newspapers." For this reference, as well as for much other
information, I am indebted to my friend, the Rev. John Stubbs, D.D.</p>
<p><SPAN name="dunsink" id="dunsink"></SPAN></p>
<div class="figcenter"> <SPAN href="images/ill_observatory_dunsink.jpg"> <ANTIMG src="images/ill_observatory_dunsink_sml.jpg" width-obs="747" height-obs="451" alt="THE OBSERVATORY, DUNSINK. From a Photograph by W. Lawrence, Upper Sackville Street, Dublin." title="" /></SPAN> <span class="caption">THE OBSERVATORY, DUNSINK. From a Photograph by W. Lawrence, Upper Sackville Street, Dublin.</span></div>
<p>The next event in the history of the Observatory was the issue of
Letters Patent (32 Geo. III., A.D. 1792), in which it is recited that
"We grant and ordain that there shall be forever hereafter a
Professor of Astronomy, on the foundation of Dr. Andrews, to be
called and known by the name of the Royal Astronomer of Ireland." The
letters prescribe the various duties of the astronomer and the mode
of his election. They lay down regulations as to the conduct of the
astronomical work, and as to the choice of an assistant. They direct
that the Provost and the Senior Fellows shall make a thorough
inspection of the observatory once every year in June or July; and
this duty was first undertaken on the 5th of July, 1792. It may be
noted that the date on which the celebration of the tercentenary of
the University was held happens to coincide with the centenary of the
first visitation of the observatory. The visitors on the first
occasion were A. Murray, Matthew Young, George Hall, and John
Barrett. They record that they find the buildings, books and
instruments in good condition; but the chief feature in this report,
as well as in many which followed it, related to a circumstance to
which we have not yet referred.</p>
<p>In the original equipment of the observatory, Ussher, with the
natural ambition of a founder, desired to place in it a telescope of
more magnificent proportions than could be found anywhere else. The
Board gave a spirited support to this enterprise, and negotiations
were entered into with the most eminent instrument-maker of those
days. This was Jesse Ramsden (1735-1800), famous as the improver of
the sextant, as the constructor of the great theodolite used by
General Roy in the English Survey, and as the inventor of the
dividing engine for graduating astronomical instruments. Ramsden had
built for Sir George Schuckburgh the largest and most perfect
equatorial ever attempted. He had constructed mural quadrants for
Padua and Verona, which elicited the wonder of astronomers when Dr.
Maskelyne declared he could detect no error in their graduation so
large as two seconds and a half. But Ramsden maintained that even
better results would be obtained by superseding the entire quadrant
by the circle. He obtained the means of testing this prediction when
he completed a superb circle for Palermo of five feet diameter.
Finding his anticipations were realised, he desired to apply the same
principles on a still grander scale. Ramsden was in this mood when
he met with Dr. Ussher. The enthusiasm of the astronomer and the
instrument-maker communicated itself to the Board, and a tremendous
circle, to be ten feet in diameter, was forthwith projected.</p>
<p>Projected, but never carried out. After Ramsden had to some extent
completed a 10-foot circle, he found such difficulties that he tried
a 9-foot, and this again he discarded for an 8-foot, which was
ultimately accomplished, though not entirely by himself.
Notwithstanding the contraction from the vast proportions originally
designed, the completed instrument must still be regarded as a
colossal piece of astronomical workmanship. Even at this day I do
not know that any other observatory can show a circle eight feet in
diameter graduated all round.</p>
<p>I think it is Professor Piazzi Smith who tells us how grateful he was
to find a large telescope he had ordered finished by the opticians on
the very day they had promised it. The day was perfectly correct; it
was only the year that was wrong. A somewhat remarkable experience
in this direction is chronicled by the early reports of the visitors
to Dunsink Observatory. I cannot find the date on which the great
circle was ordered from Ramsden, but it is fixed with sufficient
precision by an allusion in Ussher's paper to the Royal Irish
Academy, which shows that by the 13th June, 1785, the order had been
given, but that the abandonment of the 10-foot scale had not then
been contemplated. It was reasonable that the board should allow
Ramsden ample time for the completion of a work at once so elaborate
and so novel. It could not have been finished in a year, nor would
there have been much reason for complaint if the maker had found he
required two or even three years more.</p>
<p>Seven years gone, and still no telescope, was the condition in which
the Board found matters at their first visitation in 1792. They had,
however, assurances from Ramsden that the instrument would be
completed within the year; but, alas for such promises, another seven
years rolled on, and in 1799 the place for the great circle was still
vacant at Dunsink. Ramsden had fallen into bad health, and the Board
considerately directed that "inquiries should be made." Next year
there was still no progress, so the Board were roused to threaten
Ramsden with a suit at law; but the menace was never executed, for
the malady of the great optician grew worse, and he died that year.</p>
<p>Affairs had now assumed a critical aspect, for the college had
advanced much money to Ramsden during these fifteen years, and the
instrument was still unfinished. An appeal was made by the Provost
to Dr. Maskelyne, the Astronomer Royal of England, for his advice and
kindly offices in this emergency. Maskelyne responds—in terms
calculated to allay the anxiety of the Bursar—"Mr. Ramsden has left
property behind him, and the College can be in no danger of losing
both their money and the instrument." The business of Ramsden was
then undertaken by Berge, who proceeded to finish the circle quite as
deliberately as his predecessor. After four years Berge promised the
instrument in the following August, but it did not come. Two years
later (1806) the professor complains that he can get no answer from
Berge. In 1807, it is stated that Berge will send the telescope in a
month. He did not; but in the next year (1808), about twenty-three
years after the great circle was ordered, it was erected at Dunsink,
where it is still to be seen.</p>
<p>The following circumstances have been authenticated by the signatures
of Provosts, Proctors, Bursars, and other College dignitaries:—In
1793 the Board ordered two of the clocks at the observatory to be
sent to Mr. Crosthwaite for repairs. Seven years later, in 1800, Mr.
Crosthwaite was asked if the clocks were ready. This impatience was
clearly unreasonable, for even in four more years, 1804, we find the
two clocks were still in hand. Two years later, in 1806, the Board
determined to take vigorous action by asking the Bursar to call upon
Crosthwaite. This evidently produced some effect, for in the
following year, 1807, the Professor had no doubt that the clocks
would be speedily returned. After eight years more, in 1815, one of
the clocks was still being repaired, and so it was in 1816, which is
the last record we have of these interesting time-pieces. Astronomers
are, however, accustomed to deal with such stupendous periods in
their calculations, that even the time taken to repair a clock seems
but small in comparison.</p>
<p>The long tenure of the chair of Astronomy by Brinkley is divided into
two nearly equal periods by the year in which the great circle was
erected. Brinkley was eighteen years waiting for his telescope, and
he had eighteen years more in which to use it. During the first of
these periods Brinkley devoted himself to mathematical research;
during the latter he became a celebrated astronomer. Brinkley's
mathematical labours procured for their author some reputation as a
mathematician. They appear to be works of considerable mathematical
elegance, but not indicating any great power of original thought.
Perhaps it has been prejudicial to Brinkley's fame in this direction,
that he was immediately followed in his chair by so mighty a genius
as William Rowan Hamilton.</p>
<p>After the great circle had been at last erected, Brinkley was able to
begin his astronomical work in earnest. Nor was there much time to
lose. He was already forty-five years old, a year older than was
Herschel when he commenced his immortal career at Slough. Stimulated
by the consciousness of having the command of an instrument of unique
perfection, Brinkley loftily attempted the very highest class of
astronomical research. He resolved to measure anew with his own eye
and with his own hand the constants of aberration and of nutation. He
also strove to solve that great problem of the universe, the
discovery of the distance of a fixed star.</p>
<p>These were noble problems, and they were nobly attacked. But to
appraise with justice this work of Brinkley, done seventy years ago,
we must not apply to it the same criterion as we would think right to
apply to similar work were it done now. We do not any longer use
Brinkley's constant of aberration, nor do we now think that
Brinkley's determinations of the star distances were reliable. But,
nevertheless, his investigations exercised a marked influence on the
progress of science; they stimulated the study of the principles on
which exact measurements were to be conducted.</p>
<p>Brinkley had another profession in addition to that of an
astronomer. He was a divine. When a man endeavours to pursue two
distinct occupations concurrently, it will be equally easy to explain
why his career should be successful, or why it should be the
reverse. If he succeeds, he will, of course, exemplify the wisdom of
having two strings to his bow. Should he fail, it is, of course,
because he has attempted to sit on two stools at once. In Brinkley's
case, his two professions must be likened to the two strings rather
than to the two stools. It is true that his practical experience of
his clerical life was very slender. He had made no attempt to
combine the routine of a parish with his labours in the observatory.
Nor do we associate a special eminence in any department of religious
work with his name. If, however, we are to measure Brinkley's merits
as a divine by the ecclesiastical preferment which he received, his
services to theology must have rivalled his services to astronomy.
Having been raised step by step in the Church, he was at last
appointed to the See of Cloyne, in 1826, as the successor of Bishop
Berkeley.</p>
<p>Now, though it was permissible for the Archdeacon to be also the
Andrews Professor, yet when the Archdeacon became a Bishop, it was
understood that he should transfer his residence from the observatory
to the palace. The chair of Astronomy accordingly became vacant.
Brinkley's subsequent career seems to have been devoted entirely to
ecclesiastical matters, and for the last ten years of his life he did
not contribute a paper to any scientific society. Arago, after a
characteristic lament that Brinkley should have forsaken the pursuit
of science for the temporal and spiritual attractions of a bishopric,
pays a tribute to the conscientiousness of the quondam astronomer,
who would not even allow a telescope to be brought into the palace
lest his mind should be distracted from his sacred duties.</p>
<p>The good bishop died on the 13th September, 1835. He was buried in
the chapel of Trinity College, and a fine monument to his memory is a
familiar object at the foot of the noble old staircase of the library.
The best memorial of Brinkley is his admirable book on the "Elements
of Plane Astronomy." It passed through many editions in his lifetime,
and even at the present day the same work, revised first by Dr. Luby,
and more recently by the Rev. Dr. Stubbs and Dr. Brunnow, has a large
and well-merited circulation.</p>
<div style="break-after:column;"></div><br />